
Using Blue Gene/P and GPUs to Accelerate

Computations in the EULAG Model

Roman Wyrzykowski, Krzysztof Rojek, and Lukasz Szustak

Czestochowa University of Technology
Dabrowskiego 73, 42-201 Czestochowa, Poland

{roman,krojek,lszustak}@icis.pcz.pl

Abstract. EULAG (Eulerian/semi-Lagrangian uid solver) is an estab-
lished computational model developed by the group headed by Piotr K.
Smolarkiewicz for simulating thermo-uid ows across a wide range of
scales and physical scenarios. This paper presents perspectives of the
EULAG parallelization based on the MPI, OpenMP, and OpenCL stan-
dards. We focus on development of computational kernels of the EULAG
model. They consist of the most time-consuming calculations of the
model, which are: laplacian algorithm (laplc) and multidimensional pos-
itive denite advection transport algorithm (MPDATA).

The rst challenge of our work was parallelization of the laplc
subroutine using MPI across nodes and OpenMP within nodes, on the
BlueGene/P supercomputer located in the Bulgarian Supercomputing
Center. The second challenge was to accelerate computations of the Eu-
lag model using modern GPUs. We discuss the scalability issue for the
OpenCL implementation of the linear part of MPDATA on ATI Radeon
HD 5870 GPU with AMD Phenom II X4 CPU, and NVIDIA Tesla C1060
GPU with AMD Phenom II X4 CPU.

1 Introduction

Eulerian/semi-Lagrangian uid solver (EULAG) [3] is an established computa-
tional model for simulating thermo-uid ows across a wide range of scales and
physical scenarios. Its important features are: nonoscillatory integration algo-
rithms, robust elliptic solver, and generalized coordinate formulation enabling
grid adaptivity technology. The EULAG model is an ideal tool to perform numer-
ical experiments in a virtual laboratory with time-dependent adaptive meshes
and within complex, and even time-dependent model geometries.

In this work, we focus on parallelization of two computational kernels of the
EULAG model. They consist of the most time-consuming calculations of the
model, which are: laplacian algorithm (laplc) [9] and multidimensional positive
denite advection transport algorithm (MPDATA). While the starting point of
our development was BlueGene/P - the IBM supercomputer with an innova-
tive massive parallel architecture [4], we focus nally on GPUs which nowadays
become [2] extremely promising multi-core architectures for a wide range of
general-purpose applications demanding high-intensive numerical computations.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2011, LNCS 7116, pp. 670–677, 2012.
c Springer-Verlag Berlin Heidelberg 2012

Accelerate Computations in the EULAG Model 671

In our research we used the BlueGene/P machine, which is located in the
Bulgarian Supercomputing Center. This supercomputer consist of two racks,
that include 2048 PowerPC 450 processors, which gives 8192 cores. Each node
contains 2 GB RAM (4 TB RAM for two racks). This conguration supports
the single-precision peak performance of 27.85 Tops.

Current GPUs are highly ecient, multi-core processors, which have the
computing power of several Tops. GPUs oer a fast, inexpensive solution,
but understanding the parallel trade-os is crucial. These architectures allow
for creating many thousands of threads, which has a signicant inuence on
performance of parallel codes. Data transfers between GPU memory and RAM
are strongly limited by the PCI Express bandwidth. Available software such as
OpenCL and CUDA facilitate the implementation of general-purpose computa-
tion on GPUs using high-level programming languages and tools [2,6].

The material of this paper is organized as follows. In Section 2, architec-
tures of BlueGene/P and two graphics cards from leading vendors NVIDIA and
AMD are presented. Section 3 introduces computational kernels of the EULAG
model, while Section 4 is devoted to OpenCL, an emerging parallel programming
standard for multicore architectures. The key issues of parallelizing the compu-
tational kernels of the EULAG model on the target architectures are discussed
in Section 5, while results of numerical experiments are presented in Section 6.
Section 7 gives conclusions, and outlines further work.

2 Architecture Overview

Our research is based on two kind of architectures. The rst one is the Blue-
Gene/P supercomputer, while the second one are GPUs. We focus only on fea-
tures of these architecture which are used in our work.

2.1 Architecture of Blue Gene/P

Each node of BlueGene/P [4] is a single application-specic integrated circuit
(ASIC) with four IBM PowerPC 450 (PPC450) embedded 32-bit processor cores,
arranged as an SMP. Each core contains L1 cache of a 32 KB instruction cache,
and a 32 KB data cache. A dual-pipeline oating-point unit (FPU) is attached
to each PPC450 core. It supports two simultaneous double-precision oating-
point calculations in SIMD fashion. The dual-pipeline FPUs can simultaneously
execute two fused multiply-add instructions per machine cycle, each of which is
counted as 2 ops. Thus, each processor unit (PPC450 and FPU) has a peak
performance of 4 ops per machine cycle, and the BPC chip with quadruple
processor units rates at the peak performance of 16 ops per cycle (850 MHz),
or 13.6 Gops. A BG/P compute chip integrates PPC450 cores with L2 and L3
cache, memory controllers, and external 10 Gb/s network interfaces.

2.2 Architecture of GPUs

Our research is focused on NVIDIA Tesla C1060 and ATI Radeon HD 5870.

672 R. Wyrzykowski, K. Rojek, and L. Szustak

Architecture of NVIDIA Tesla C1060. NVIDIA Tesla C1060 [7] includes 10
Thread Processing Clusters (TPC). Every TPC contains 3 compute units. Each
compute unit consists of 8 processing elements, and 16KB of local memory. It
gives a total number of 240 available processing elements with a clock rate of
1296 MHz. It provides a peak performance of 240 ∗ 1.296 ∗ 2 = 622 Gflops in
single precision. This graphics accelerator card includes 4 GB of global memory
with the peak bandwidth of 102.4 GB/s.

Architecture of ATI Radeon HD 5870. ATI Radeon HD 5870 [1] includes 20
compute units. Each compute unit consists of 16 processing elements, and 32KB
of local memory. Each of the processing element is built of 5 streaming processors.
It gives a total number of 1600 available streaming processors with a clock rate
of 850 MHz, and provides the peak performance of 1600∗0.850∗2 = 2720 Gflops

in single precision. This accelerator card includes only 1 GB of global memory
with the peak bandwidth of 153.6 GB/s.

3 The Scope of Our Research on the EULAG Model

The most time-consuming calculations of the EULAG model are two algorithms:
laplacian algorithm (laplc) and multidimensional positive denite advection
transport algorithm (MPDATA). To identify the most intensive computing we
used TAU and gprof prolers.

3.1 Laplacian Algorithm

The laplc routine is summarized in three stages [3,9]. The rst one is responsible
for computing pressure derivatives:

pki =
pki+1 − pki−1

2
· δk, (1)

where pki is a pressure in the i-th point of a mesh, k determines the dimension
of the mesh, in which i is incremented, and δk is a distance between points in
the mesh. The second stage is based on the following equation:

fk
i = −pki · ci, (2)

where f is an interior pressure force, and ci is a coecient function. The last stage
is responsible for computing the laplacian function, which is nally expressed by
the following equation:

ri = −



k

fk
i+1 − fk

i−1

2 · ci
· δk. (3)

Accelerate Computations in the EULAG Model 673

3.2 Linear Version of MPDATA

The multidimensional positive denite advection transport algorithm [8] is based
on the following equation:

Ψ
n+1
i = Ψ

n
i −

δt

νi

l(i)

j=1

F⊥
j Sj , (4)

where Ψ is a nondiusive scalar eld, Sj refers both to the face itself and its
surface area, νi is the volume of the cell containing vertex i, while F⊥

j is inter-
preted as the mean normal ux through the cell face Sj averaged over temporal
increment δt.

The approximation begins with specifying uxes F⊥
j :

F⊥
j = 0.5(v⊥j + |v⊥j |)Ψ

n
i + 0.5(v⊥j − |v⊥j |)Ψ

n
j , (5)

where advective normal velocity (v⊥j) is evaluated at the face Sj and assumes
the following form:

v⊥j = Sj · 0.5[vi + vj]. (6)

4 OpenCL: Emerging Standard for Multicore
Architectures

Open Computing Language (OpenCL) is an open, royalty-free standard for
parallel programming of heterogeneous computing platforms including CPUs,
GPUs, and other processors like Cell/B.E [6,5,10]. It denes the host API for
coordinating parallel computation across heterogeneous processors, and a pro-
gramming language. OpenCL allows for creating portable code across dierent
devices and architectures. The OpenCL allows applications to use OpenCL plat-
form as a single heterogeneous parallel computer system.

The OpenCL platform consists of CPU (host) and one or more graphics cards
(compute devices). Compute devices execute functions called kernels. Kernels
are instanced as work-items that are grouped in work-groups. Work-items are
executed as SIMD or SPMD on processing elements. Work-items executing a
kernel have access to distinct memory regions.

5 Accelerating Computations in the EULAG Model

There are dierent methods of parallelization and parallel programming, which
can be used depending on a target computer architecture. In this work, we
utilize commonly adopted standards of parallel programing: MPI and OpenMP
for BlueGene/P, as well as the emerging standard OpenCL for GPUs.

674 R. Wyrzykowski, K. Rojek, and L. Szustak

Fig. 1. Data distribution across array of nodes

5.1 Accelerating Computations in Laplc Kernel

One of the most ecient methods of parallelization is to use the message passing
(MPI standard) across nodes and multithreading (OpenMP) within each node.
In case of the laplc kernel, the rst step is parallelization of the algorithm using
MPI across a 2D array of nodes, having in mind to provide a load balancing.
Fig. 1 shows data distribution across the array of nodes. We can extract two
dierent ways of data distribution due to data dependencies. The rst way is
based on data dependencies across rows, while the second one is based on data
dependencies across columns. To avoid communication between nodes, additional
computations are required. Every data chunk is extended by additional rows or
columns. Each additional row or column is the same as the row or column in the
nearest neighbor chunk, respectively.

The second step is to add the parallelization with OpenMP applied for the
laplc routine. This parallelization is implemented using 4 threads within one
node. The main challenges for this step are:

1. avoiding reallocation of memory with every call of the routine;
2. possibility of creating OpenMP threads out of this routine;
3. providing shared access to memory by creating threads after memory allo-

cation.

5.2 Accelerating Computations in MPDATA Kernel

The main challenge of parallelization of MPDATA on GPUs is decomposition
of a 3D MPDATA mesh (N by M by L) into a 2D grid (N by M) of threads.
Fig. 2 shows a 2D grid decomposition into work-groups.Work-groups are mapped
into a 2D grid of size RN by CM. A work-group is a collection of work-items of
size n=N/RN by m=M/CM. Each work-item computes a single element of the
2D grid (L elements of 3D MPDATA mesh). To avoid communication between
work-groups, additional work-items are required. Every work-group is extended
by additional rows and columns of work-items. Each additional row and column
is the same as the row and column in the nearest neighbor work-group.

Accelerate Computations in the EULAG Model 675

Fig. 2. MPDATA decomposition into work-groups

if(j<M && i<N)

for(k=0; k<L; ++k)

x(i, j, k)-=

(f1(i+1, j, k)-f1(i, j, k)+f2(i, j+1, k)-f2(i, j, k)

+f3(i, j, k+1)-f3(i, j, k))/h(i, j, k);

Fig. 3. The main part of MPDATA kernel

Fig. 3 presents the main part of the MPDATA kernel. Here f1, f2, f3 are
computed using donnor-cell (upwind) scheme where donnor = x − y for x > y

and 0 otherwise.

6 Performance Results

6.1 Performance Analysis for Laplc

The parallelization of the laplc routine was based on the hybrid model (MPI and
OpenMP). The simulations were performed for dierent data mesh sizes (from
1000x1000 to 9000x9000) using 4, 16, 25, and 100 nodes, that gives 16, 64, 100,
and 400 threads, respectively. After introducing some additional computation,
the algorithm does not require any communication mechanisms between nodes,
so the algorithm is very scalable. The implementation provides a very good
load balancing up to 400 threads using the hybrid model. For the mesh of size
9000x9000, the execution time of calculation for 1, 16, 64, 100, and 400 threads
are 41.5, 4.57, 0.72, 0.34, and 0.068 seconds, respectively.

Table 1 shows performance results for the laplc routine, for the mesh of size
9000x9000. The speedups for 16, 64, 100, and 400 threads are 9.07, 57.56, 121.91,
and 592.14, respectively. In this case, the eciencies are 0.56, 0.89, 1.21, and
1.48, respectively. The key reason for the super-eciency is dividing data among
nodes into smaller chunks. It improves tting data-elements into available caches,
enhancing cache reuse.

676 R. Wyrzykowski, K. Rojek, and L. Szustak

Table 1. Performance results for laplc (mesh of size 9000 by 9000)

Number of threads Execution time [s] Speedup Eciency

1 41.45 - -

16 4.57 9.07 0.56

64 0.72 57.56 0.89

100 0.34 121.91 1.21

400 0.07 592.14 1.48

Table 2. MPDATA performance results (mesh of size 90x90x1500)

Hardware Kernel Kernel Kernel+ Kernel+ Kernel+ Kernel+ Host-GPU Memory
time speedup data rec. data rec. transfer transfer bandwidth usage
[s] time [s] speedup time [s] speedup [GB/s] [MB]

CPU 0.75 1 - - - - - 514.016

NVIDIA Tesla 0.041 18.29 0.06 12.5 0.16 4.68 2.57092 584.543

ATI Radeon 0.039 19.23 0.08 9.38 0.27 2.78 1.35215 584.543

6.2 MPDATA Performance Analysis

The algorithm was tested on the NVIDIA Tesla C1060 card with Linux and ATI
Radeon HD 5870 with Windows7. The achieved results are compared with a
single-core implementation on the AMD Phenom(tm) II X4 955 processor with
Linux.

The MPDATA implementation distinguishes three stages. The rst one is
sending data, the second one is the kernel responsible for the computations, and
the last one is receiving data. Table 2 shows performance results of the MPDATA
routine for the mesh of size 90x90x1500. The kernel speedup for NVIDIA Tesla
is 18.29, while for ATI Radeon is 19.23. The data transfers have a signicant
impact on the resulting execution time. Time of data transfers is several times
larger than computation time. The achieved bandwidth of data transfer between
host and global memory is 2.57 GB/s on NVIDIA Tesla and 1.35 GB/s on
ATI Radeon, where the theoretical peak bandwidth is 4 GB/s. As a result, the
speedup for NVIDIA Tesla and ATI has decreased to 4.68 and 2.78, respectively.

7 Conclusions and Further Work

The implemented parts of the EULAG model do not require any communica-
tion between threads, so the algorithms are very scalable. However, this approach
requires some additional calculations for each thread. Our implementation pro-
vides a very good load balancing, when using the hybrid model on BlueGene/P,
and OpenCL on GPUs.

The rst challenge of our work was parallelization of the laplc code, using the
hybrid model with MPI across nodes and OpenMP within nodes. This solution
allows for a good usage of both shared and distributed-memory system resources,

Accelerate Computations in the EULAG Model 677

concerning memory capacity, latency, and bandwidth. Also, the hybrid model
allows for the adaptation of the EULAG code to other hierarchical architectures
such as clusters of multi-core processors.

The second challenge was acceleration of MPDATA using modern GPUs. The
code was adopted to two types of GPUs from two leading vendors. NVIDIA
TESLA was tested with Linux operating system, while ATI Radeon used Win-
dows7. On ATI we achieved a little better performance of kernel computing,
but a worse bandwidth of data transfers than on NVIDIA. In both cases, the
performance on GPU is higher than on CPU.

Our parallelization of the EULAG model is still under development. One of
leading approaches is using the autotuning technique which allows for algorithm
self-adapting to properties of a system architecture. The nal result of our work
will be adaptation of the EULAG model to heterogeneous clusters with CPUs
and GPUs. In this case, the key challenge will be to nd an optimal load balance
between GPUs and CPUs.

References

1. AMD Corporation: ATI Radeon HD 5870 Feature Summary, http://www.amd.com/
2. Dokken, T., Hagen, T.R., Hjelmervik, J.M.: An Introduction to General-Purpose

Computing on Programmable Graphics Hardware. In: Geometric Modelling, Nu-
merical Simulation, and Optimization: Applied Mathematics at SINTEF, pp. 123–
161. Springer, Heidelberg (2007)

3. Eulag Research Model for Geophysical Flows, http://www.eulag.com/
4. IBM Blue Gene Team: Overview of the IBM Blue Gene/P project. IBM Journal

of Research and Development 52, 199–220 (2008)
5. Khronos OpenCL Working Group: The OpenCL C++ Wrapper API,

http://www.khronos.org

6. Khronos OpenCL Working Group: The OpenCL Specication,
http://www.khronos.org

7. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unied
Graphics and Computing Architecture. IEEE Micro 28, 39–55 (2008)

8. Smolarkiewicz, P., Szmelter, J.: MPDATA: An edge-based unstructured-grid for-
mulation. Elsevier Journal of Computational Physics 206, 624–649 (2005)

9. Sviercoski, R., Winter, C., Warrick, A.: Analytical approximation for the general-
ized Laplace equation with step function coecient. J. Appl. Math. 68, 1268–1281
(2008)

10. Tsuchiyama, R., Nakamura, N., Iizuka, T., Asahara, A., Miki, S.: The OpenCL
Programming Book. Fixstars Corporation (2010)

