
Toward efficient distribution of MPDATA stencil
computation on Intel MIC architecture

Lukasz Szustak
Czestochowa University of

Technology

lszustak@icis.pcz.pl

Krzysztof Rojek
Czestochowa University of

Technology

krojek@icis.pcz.pl

Roman Wyrzykowski
Czestochowa University of

Technology

roman@icis.pcz.pl

Pawel Gepner
Intel Corporation

pawel.gepner@intel.com

ABSTRACT

The multidimensional positive definite advection transport
algorithm (MPDATA) belongs to the group of nonoscilla-
tory forward-in-time algorithms, and performs a sequence of
stencil computations. MPDATA is one of the major parts
of the dynamic core of the EULAG geophysical model.

The Intel Xeon Phi coprocessor is the first product based
on the Intel Many Integrated Core (Intel MIC) architec-
ture. This architecture offers notable performance advan-
tages over traditional processors, and supports practically
the same traditional parallel programming model.

In this work, we outline an approach to adaptation of the
3D MPDATA algorithm to the Intel MIC architecture. This
approach is based on combination of temporal and space
blocking techniques, and allows us to ease memory and com-
munication bounds and better exploit the theoretical float-
ing point efficiency of target computing platforms. In order
to utilize computing resources available in Intel Xeon Phi,
the proposed approach employs two main levels of paral-
lelism: (i) task parallelism which allows for utilization of
more than 200 logical cores, and (ii) data parallelism to use
efficiently 512-bit vector processing units.

An important method of improving the efficiency of the
block decomposition is partitioning of available cores/threads
into teams. It allows us to reduce inter-cache communica-
tion overheads. Also, this method increases opportunities
for the efficient distribution of MPDATA computation onto
available resources. The purpose is to provide the trade-off
between two coupled criteria: load balancing and intra-cache
communication.

We discuss performance results obtained on two platforms,
including either two Intel Xeon E5-2643 CPUs and Intel
Xeon Phi 3120A, or two Intel Xeon E5-2697 v2 CPUs and In-
tel Xeon Phi7120P. The top-of-the-line Intel Xeon Phi 7120P
gives the best performance results for all tests.

The achieved performance results provide a basis for fur-

HiStencils 2014

First International Workshop on High-Performance Stencil Computations
January 21, 2014, Vienna, Austria

In conjunction with HiPEAC 2014.

http://www.exastencils.org/histencils/2014/

ther research on optimizing the distribution of MPDATA
computations across all the computing resources of the Intel
MIC architecture, taking into consideration features of its
on-board memory, cache hierarchy, computing cores, and
vector units.

Keywords

Stencil computation, MPDATA algorithm, temporal/space
blocking techniques, Intel MIC, OpenMP, task scheduler

1. INTRODUCTION
MPDATA [7] is one of the two major parts of the dy-

namic core of the EULAG model. EULAG (Eulerian/semi-
Lagrangian fluid solver) is an established geophysical model
for simulating thermo-fluid flows across a wide range of scales
and physical scenarios, including the numerical weather pre-
diction (NWP).

The newest research of EULAG parallelization have been
carried out using IBM Blue Gene/Q and CRAY XE6 [4]. 3D
MPI parallelization has been used for running EULAG on
these systems with tens of thousands of cores, or even with
more than 100K cores. When parallelizing EULAG compu-
tation on supercomputers and CPU clusters, the efficiency
is declined below 10%. We propose to rewrite the EULAG
dynamical core and replace standard HPC systems by small
heterogeneous clusters with accelerators such as GPU [5]
and Intel MIC [3].

Preliminary studies of porting anelastic numerical mod-
els to modern architectures, including hybrid CPU-GPU ar-
chitectures, were carried out in works [5, 11, 10]. The re-
sults achieved for porting selected parts of EULAG to non-
traditional architectures revealed potential in running scien-
tific applications, including anelastic numerical models, on
novel hardware architectures.

In this work, we outline an approach to adaptation of the
3D MPDATA algorithm to the Intel MIC architecture. This
approach is based on combination of temporal and space
blocking techniques, and allows us to ease memory and com-
munication bounds, and better exploit the theoretical float-
ing point efficiency of target computing platforms. We show
some of the optimization methods that we found effective,
and demonstrate their impact on the performance of both
the Intel CPU and MIC architectures. We mainly focus on
the use of MPDATA in NWP, where the size of grids is lim-
ited by n ≤ 2048, m ≤ 1024, and l = [64, 128]. The starting

point in these research is an unoptimized parallel implemen-
tation of the MPDATA algorithm. In our work, we use the
OpenMP standard for multi-/many-core programming.

2. ARCHITECTURE OVERVIEW

2.1 Intel MIC architecture
The Intel MIC architecture combines many Intel CPU

cores onto a single chip [2, 3]. The Intel Xeon Phi coproces-
sor is the first product based on this architecture. The main
advantage of these accelerators is that it is built to provide
a general-purpose programming environment similar to that
provided for Intel CPUs. This coprocessor is capable of run-
ning applications written in industry-standard programming
languages such as Fortran, C, and C++.

The Intel Xeon Phi coprocessor includes processing cores,
caches, memory controllers, PCIe client logic, and a very
high bandwidth, bidirectional ring interconnect [3]. Each co-
processor contains of more than 50 cores clocked at 1 GHz or
more. These cores support four-way hyper-threading, which
gives more than 200 logical cores. The actual number of
cores depends on the generation and model of a specific co-
processor. Each core features an in-order, dual-issue x86
pipeline, 32 KB of L1 data cache, and 512 KB of L2 cache
that is kept fully coherent by a global-distributed tag direc-
tory. As a result, the aggregate size of L2 caches can exceeds
25 MB. The memory controllers and the PCIe client logic
provide a direct interface to the GDDR5 memory on the
coprocessor and the PCIe bus, respectively. The coproces-
sor has over 6 GB of on-board memory (maximum 16 GB).
The high-speed bidirectional ring connects together all the
cores, caches, memory controllers and PCIe client logic of
Intel Xeon Phi coprocessors.

An important component of each Intel Xeon Phi process-
ing core is its vector processing unit (VPU) [2], that signifi-
cantly increases the computing power. Each VPU supports a
new 512-bit SIMD instruction set called Intel Initial Many-
Core Instructions. The new ability to work with 512-bit
vectors enables operating on 16 float or 8 double elements
per iteration, instead of a single element.

The Intel Phi coprocessor is delivered in form factor of
a PCI express device, and cannot be used as a stand-alone
processor. Since the Intel Xeon Phi coprocessor runs Linux
operating system, any user can access the coprocessor as a
network node, and directly run individual applications in the
native mode. These coprocessors also support heterogeneous
applications wherein a part of the application is executed
on the host (CPU), while another part is executed on the
coprocessor (offload mode).

2.2 Target platforms
In this study, we use two platforms containing a single

Intel Xeon Phi coprocessor. The first platform is equipped
with two newest Intel Xeon E5-2697 v2 CPUs (totally 2× 2
cores), based on the Ivy Bridge architecture, and the Intel
Xeon Phi 3120A card (57 cores). The second one includes
two Sandy Bridge-EP Intel Xeon E5-2643 CPUs (2×4 cores
in total), and the top-of-the-line Intel Xeon Phi 7120P co-
processor (61 cores). The peak performances of these plat-
forms are 1521 (2x259 + 1003) GFlop/s and 1419 (2x105.5
+ 1208) GFlop/s. These values are given for the double
precision arithmetic, with taking into account the usage of
SIMD vectorization. The important feature of Intel Xeon

Phi coprocessors is the high memory bandwidth. In partic-
ular, Intel Xeon Phi 7120P provides 352 GB/s of memory
bandwidth, as compared with 2× 51.2 GB/s for both CPU
platforms.

A summary of key features of tested platforms can be
found in [1].

3. OUTLINE OF MPDATA
MPDATA belongs to the group of nonoscillatory forward-

in-time algorithms, and performs a sequence of stencil com-
putations. The 3D MPDATA algorithm is based on the
first-order-accurate advection equation:

∂Ψ

∂t
= −

∂

∂x
(uΨ)−

∂

∂y
(vΨ)−

∂

∂z
(wΨ), (1)

where x, y and z are space coordinates, t is time, u, v, w =
const are flow velocities, and Ψ is a nonnegative scalar field.
Eqn. (1) is approximated according to the donor-cell scheme,
which for the (n+ 1)-th time step (n = 0, 1, 2, . . .) gives the
following equation:

Ψ∗

i,j,k = Ψn
i,j,k − [F (Ψn

i,j,k,Ψ
n
i+1,j,k, Ui+1/2,j,k)−

F (Ψn
i−1,j,k,Ψ

n
i,j,k, Ui−1/2,j,k)]−

[F (Ψn
i,j,k,Ψ

n
i,j+1,k, Vi,j+1/2,k)−

F (Ψn
i,j−1,k,Ψ

n
i,j,k, Vi,j−1/2,k)]−

[F (Ψn
i,j,k,Ψ

n
i,j,k+1,Wi,j,k+1/2)−

F (Ψn
i,j,k−1,Ψ

n
i,j,k,Wi,j,k−1/2)].

(2)

U ≡
uδt

δx
; [U]+ ≡ 0, 5(U + |U |); [U]− ≡ 0, 5(U − |U |). (3)

The same definition is true for the local Courant numbers
V and W .

The first-order-accurate advection equation is approxima-
ted to the second order in δx, δy and δt, through defining
the advection-diffusion equation. Such a transformation is
widely described in the literature. For the full description
of the most important aspects of the second-order-accurate
formulation of MPDATA, the reader is referred to [6, 7].

The whole MPDATA computation in each time step are
decomposed into a set of 17 stencil sweeps, called further
stages. Each stage is responsible for calculating elements of
a certain matrix, based on the corresponding stencil. The
stages dependent on each other. Results of stages are usually
input data for the next one.

A single MPDATA time step requires 5 input and 1 out-
put matrices, other 16 matrices are temporary ones. In the
basic, unoptimized implementation of the MPDATA algo-
rithm, every stage reads a required set of matrices from the
main memory, and writes results to the main memory after
computation. This scheme is repeated for all the stages.

In consequence, a significant traffic to the main memory
is generated. Moreover, compute units (cores/threads, and
VPUs) have to wait for data transfers from the main memory
to the cache hierarchy. In order to better utilize features of
novel accelerators, the adaptation of MPDATA computation
to the Intel MIC architecture is considered in this work,
taking into account the memory-bounded character of the
algorithm.

Stage 1
Stage 2

Stage 3

Stage 17 s-d
im

ensio
n

Figure 1: Idea of block decomposition of MPDATA
computation

4. BLOCK DECOMPOSITION OF MPDATA

4.1 Basic idea
Since the 3D MPDATA algorithm includes so many in-

termediate computation, one of the primary methods for
reducing the saturation of memory traffic is to avoid data
transfers associated with these computation. For this aim,
all the intermediate results must be kept in the cache mem-
ory, which increases the cache reusing. The memory traffic
is generated only to transfer the required input and output
data. Such an approach is commonly called the temporal
blocking [8, 9].

In order to implement this approach efficiently, the loop
tiling technique is applied. As a result, the grid is parti-
tioned into blocks. Every block is responsible for comput-
ing all the 17 stages within the part of grid assigned to it.
Within a single block, each stage provides computation for
the adequate chunk of the corresponding matrix. Executing
of a sequence of blocks determines the final output result for
a single MPDATA time step.

The main requirement for this approach is to keep in the
cache hierarchy all the data required for MPDATA computa-
tion within each block. Therefore, the size nB×mB× lB of
each block has to be selected in an appropriate way. The idea
of block decomposition of the MPDATA algorithm is shown
in Fig. 1. This decomposition determines four dimensions
of distribution of MPDATA calculation across computing
resources: i-, j-, and k-dimensions are related to the grid
partitioning, while s-dimension is associated with the order
of executing MPDATA stages.

Computing each MPDATA block requires extra calcula-
tion and communication for every stage because of data de-
pendencies between stages. Extra calculations and commu-
nication have to take place on the borders between adjacent
blocks, in order to ensure the correct results of the whole
algorithm. Therefore, blocks are extended by adequate halo
areas. As a result, blocks are independent of each other, and
there are no communication between blocks within a single
MPDATA time step.

The sizes of halo areas are determined in all the four di-
mensions (i, j, k and s), according to data dependencies
between MPDATA stages. Thus, each of 5 input, one out-
put, and 16 temporary matrices, is partitioned into chunks
of size nB×mB×lB, which further is expanded by adequate
halo areas with sizes iL, iR, and jL, jR, as well as kL, kR.

This approach allows us to avoid memory transfers for
intermediate computation at the cost of extra computation
associated with halo areas in chunks of temporary matrices,

as well as extra communication between the main and cache
memories, corresponding to halo areas in chunks of the input
matrices. Another advantage of this approach is reducing
the main memory consumption because all the intermediate
results are stored in the cache memory only. In the case
of coprocessors, it plays an important role because the size
of on-board main memory is fixed, and significantly smaller
than for traditional CPU solutions.

The requirement of expanding halo areas is one of the ma-
jor difficulties when applying the proposed approach, taking
into account data dependencies between MPDATA stages.
It requires to develop a dedicated task scheduling for the
MPDATA block decomposition.

4.2 Improving efficiency of block decomposi-
tion

Although the block decomposition of MPDATA allows for
reducing the memory traffic, it still does not guarantee a sat-
isfying utilization of target platforms. The main difficulty
here is associated with extra computation and communica-
tion, which have impact on the performance degradation. In
particular, there are three groups of extra computation and
communication, corresponding to i-, j-, and k-dimensions.
Some of them can be reduced or even avoided by applying
the following rules:

1. The additional calculation and communication in k-
dimension can be avoided if lB = l, and the size nB×
mB × lB of block is small enough to save in cache all
the required data. This rule is especially useful when
the value of l is relatively small, as it is in the case of
NWP, where l is in range [64, 128].

2. The overheads associated with j-dimension is avoided
by leaving partial results in the cache memory. It be-
comes possible when extra computation are repeated
by adjacent blocks. In this case, some results of inter-
mediate computation have to reside in cache for exe-
cuting the next block. This rule requires to develop a
flexible management of computation for all the stages,
as well as an adequate mapping of partial results onto
the cache space. In consequence, all the chunks are
still expanded by their halo areas, but only some por-
tions of these chunks are computed within the current
block. It means that this approach does not increase
the cache consumption. The idea of improving the ef-
ficiency of block decomposition is shown in Fig. 2.

3. In order to reduce additional calculations in i-dimension,
the size nB should be as large as possible to save in
the cache hierarchy all the data required to compute a
single block.

5. MPDATA PARALLELIZATION

5.1 Partitioning of cores/threads into indepen-
dent teams

Another method of improving the efficiency of the pro-
posed block decomposition is partitioning of available cores/
threads into teams. Each team corresponds to a piece of the
MPDATA grid, and executes calculation according to the
block decomposition strategy. As a results, the MPDATA

leaving partial results

in cache for next block

A B C

grid

standard block

decomposition

improved block

decomposition

A B C

C

B

A

i

j

Figure 2: Idea of leaving partial results in cache
memory

60 cores 8 teams
grid

5
3

%
4

7
%

T0 T1 T2 T3

T4 T5 T6 T7

4 teams with

8 cores each

4 teams with

7 cores each

25% 25% 25% 25%

i

j

Figure 3: Partitioning of Intel MIC processing cores
into teams when performing MPDATA computation

grid is distributed into pieces, and then each piece is decom-
posed into MPDATA blocks. Computation executed within
teams are independent within each time step.

The proposed method allows us to reduce inter-cache com-
munication overheads due to communication between neigh-
bour threads, as well as their synchronization. What is also
important, this method increases opportunities for the effi-
cient load distribution of MPDATA computation onto avail-
able resources. These advantages are achieved at the cost of
some extra computation performed by teams.

In general, pieces of the grid corresponding to different
teams are characterized by various sizes. Numbers of cores/
threads assigned to teams are different, as well. Fig. 3 shows
an example of partitioning 60 Intel MIC processing cores
into 8 teams, and distribution of the MPDATA grid onto
teams. To provide load balancing, we distinguish 4 teams
with 8 cores each, and 4 teams 7 cores each. Moreover,
pieces of the MPDATA grid corresponding to these teams
have different sizes along i-dimension.

5.2 Task and data parallelisms
In order to utilize computing resources available in the

Intel Xeon Phi coprocessor, the proposed approach employs
two main levels of parallelism:

• task parallelism which allows for utilization of more
than 200 logical cores;

• data parallelism to use efficiently 512-bit vector pro-
cessing units.

a) b)

S1: S1:

S4: S4:

S17: S17:

c
o
re
1

c
o
re
2

c
o
re
3

c
o
re
0

c
o
re
1

c
o
re
2

c
o
re
3

c
o
re
0

task

Figure 4: Example of distribution of calculation
within a team of cores: (i) first scenario sacrifices
load balancing for reducing intra-cache communica-
tion; (ii) second scenario improves load balancing at
the cost of increasing intra-cache communication

All computation executed within every MPDATA block of
size nB ×mB × lB are distributed across available threads
in each team. Each block is partitioned into sub-blocks of
size nB∗ ×mB∗ × lB, where partitioning takes place along
i and j dimensions. Within an MPDATA block, tasks are
assigned to sub-blocks, where each sub-block is computed
by a corresponding thread.

Another level of parallelization is vectorization applied
within each thread, so the resulting SIMDification is per-
formed within k-dimension. In consequence, the value of
size lB has to be adjusted to the vector size.

At the same time, for a fixed MPDATA block, a sequence
of stages is executed, taking into account the adequate sizes
of halo areas. Due to the data dependencies of MPDATA,
appropriate synchronizations between MPDATA stages are
necessary. Finally, within each team its MPDATA blocks are
processed sequentially, following the order proposed for the
block decomposition in Section 4. Naturally, teams perform
all computation in parallel.

5.3 Distribution of calculation within team of
cores

An appropriate distribution of calculation within team
of cores is crucial for optimizing the overall system perfor-
mance. The purpose is to provide the trade-off between
two coupled criteria: load balancing and intra-cache com-
munication. In fact, aiming at improving the load balancing
within a team, we have to take into account the possibility of
undesirable effect of increasing the communication between
cores/threads, implemented through the cache hierarchy.

Fig. 4 illustrates an example of two scenarios of distribut-
ing MPDATA calculation within a given team of cores for
the block of size 1×8×l. In this example, a single team corre-
sponds to 4 cores (one thread per core is assumed). The first
scenario (Fig. 4a) features less amount of intra-cache com-
munication between tasks (threads) than the second one.
However, the load imbalance within the team of cores is
noticeable in this scenario. The second scenario provides
a better load balance across available resources assigned to
team, but it requires more intra-cache communication.

Because of intra-cache communication between tasks, the

overall system performance depends strongly on a chosen
task placement onto available cores (threads). Therefore,
the physical core affinity plays a significant role in optimiz-
ing the system performance. In this work, the affinity is
adjusted manually, to force communication between tasks
placed onto the closest adjacent cores, as much as possible.
This increases the sustained intra-cache bandwidth, as well
as reduces cache misses, and the latency of access to the
cache memory.

6. PERFORMANCE RESULTS
In this section, we present preliminary performance results

obtained for the double precision 3D MPDATA algorithm on
the platforms introduced in Section 2. In all the tests, we
use the icc compiler as a part of Intel Parallel Studio 2013,
with the same optimization flags. The best configurations,
including number of teams, size of block, and distribution of
computation within team, are chosen in an empirical way,
individually for each platform. Moreover, we use Intel Xeon
Phi in the native mode.

Currently, only the first four stages of MPDATA are im-
plemented and tested. These four stages correspond to the
linear version of MPDATA. Since all the input matrices are
required to provide the correctness of calculation, the over-
all performance for this part of MPDATA is strongly limited
by the memory traffic between the main memory and cache
memory.

Fig. 5 presents the normalized execution time of the 3D
MPDATA algorithm, for 500 time steps and the grid of size
1022 × 512× 63.

Fig. 5a shows a performance gain for the improved version
of block decomposition. The proposed method of reducing
extra computation allows us to speedup MPDATA block ver-
sion from 2 to 4 times, depending on the platform used and
size of the grid.

The impact of block size on the overall performance is
illustrated in Fig. 5b. In general, the larger block size the
higher performance is achieved. However, the limiting factor
is the cache size.

According to Fig. 5c, among five tested configurations
the best results are obtained for the configuration containing
14 teams, with 16 threads per each team. Rather surpris-
ingly this configuration uses only 56 cores. These configura-
tions are highly distinguished with respect to load balancing
of MPDATA computation and intra-cache communication.
In consequence, significant performance differences are ob-
served in these tests.

The advantages of using vectorization is observed for all
the platforms. In particular, for Intel Xeon Phi 7120P, it
allows us to accelerate computation more than 3 times using
all the available threads/cores (Fig. 5d).

Fig. 5e shows the performance obtained for different num-
bers of threads per core, using Intel Xeon Phi 7120P. The
best efficiency of computation is achieved when running 4
threads per each core.

The performance comparison of all the platforms is shown
in Fig. 5f. For each platform, we use all the available cores
with vectorization enabled. As expected, the best perfor-
mance result is obtained using Intel Xeon Phi 7120P. This
coprocessor executes the MPTADA algorithm 2 times faster
than two Intel Xeon E5-2697 v2 CPU, totally containing 24
cores. The both models of the Intel Xeon Phi coprocessor
give similar performance results.

a)

normalized execution time

Intel Xeon Phi 7120P

block version

improved block version

2xIntel Xeon E5-2643

2xIntel Xeon E5-2697v2

Intel Xeon Phi 7120P

Intel Xeon Phi 3120A

f)

disabled SIMD

enabled SIMD

e)

normalized execution time

Intel Xeon Phi 7120P

b)

normalized execution time

Intel Xeon Phi 7120P

block of size 1x32x63

block of size 1x64x63

c)

20 tm (12 th/tm, 60 c)

14 tm (16 th/tm, 56 c)

12 tm (20 th/tm, 60 c)

10 tm (24 th/tm, 60 c)

normalized execution time

Intel Xeon Phi 7120P

6 tm (40 th/tm, 60 c)

tm-teams; th-threads; c-cores

60cores - 60threads

60cores - 120threads

60cores - 180threads

60cores - 240threads

normalized execution time

Intel Xeon Phi 7120P

d)

normalized execution time

Figure 5: Preliminary performance results: (a)
comparison of block and improved block versions;
(b) performance for different block sizes (c) perfor-
mance for different configurations of teams; (d) ad-
vantages of using vectorization; (e) performance for
different numbers of threads per core; (f) compar-
ison of Intel Xeon CPU and Intel Xeon Phi (best
configurations with SIMD)

7. CONCLUSIONS
Using the Intel Xeon Phi coprocessor to accelerate com-

putations in the 3D MPDATA algorithm is a promising di-
rection for developing the parallel implementation of the
EULAG model. Rewriting the EULAG code, and replac-
ing conventional HPC systems with heterogeneous clusters
using accelerators such as Intel MIC is a perspective way
to improve the efficiency of using this model in practical
simulations.

The main challenge of the proposed parallelization is to
take advantage of many- and multi-core, vectorization, and
cache reusing. For this aim, we propose the block version
of the 3D MPDATA algorithm, based on combination of
temporal and space blocking techniques. Such an approach
gives us the possibility to ease memory bounds by increasing
the efficient cache reusing, and reducing the memory traffic
associated with intermediate computations. Furthermore,
the proposed method of reducing extra computation allows
us to accelerate the MPDATA block version up to 4 times,
depending on the platform used and size of the grid.

Another method of improving the efficiency of the pro-
posed block decomposition is partitioning of available cores/
threads into teams. Each team corresponds to a piece of the
MPDATA grid, and executes calculation according to the
block decomposition strategy. It allows us to reduce inter-
cache communication overheads due to communication be-
tween neighbour threads, and their synchronization. Also,
this method increases opportunities for the efficient load dis-
tribution of MPDATA computation on available resources.

An appropriate distribution of calculation within team
of cores is crucial for optimizing the overall system perfor-
mance. The purpose is to provide the trade-off between two
coupled criteria: load balancing and intra-cache communi-
cation. Aiming at improving the load balancing within a
team, the possibility of undesirable effect of increasing the
communication between cores/threads has to be taken into
account.

In all the performed tests, the Intel Xeon Phi 7120P copro-
cessor gives the best performance results. Both the many-
core and vectorization features of the Intel MIC architecture
play the leading role in the performance exploitation. The
other important features are the block size, number of teams,
number of threads per core, as well as an adequate thread
placement onto physical cores. All these features have a
significant impact on the sustained performance.

The achieved performance results provide the basis for
further research on optimizing the distribution of MPDATA
computation across all the computing resources of the In-
tel MIC architecture, taking into consideration features of
its on-board memory, cache hierarchy, computing cores, and
vector units. Additionally, the proposed approach requires
to develop a flexible data and task scheduler, supported
by adequate performance models. Another direction of fu-
ture work is adaptation to heterogeneous clusters with Intel
MICs, with a further development and optimization of code.

8. ACKNOWLEDGMENTS
This work was supported by the Polish National Science

Centre under grant no. UMO-2011/03/B/ST6/03500, and
by the Polish Ministry of Science and Education under grant
no. BS/MN-1-112-304/2013/P.

We gratefully acknowledge the help and support provided

by Jamie Wilcox from Intel EMEA Technical Marketing
HPC Lab.

9. REFERENCES
[1] Intel Architectures Comparison.

http://ark.intel.com/compare/75799,75797,64587,75283.

[2] Intel Xeon Phi Coprocessor System Software

Developers Guide. Intel Corporation, 2013.

[3] Parallel Programming and Optimization with Intel

Xeon Phi Coprocessors, Handbook on the Development

and Optimization of Parallel Applications for Intel

Xeon Processors and Intel Xeon Phi Coprocessors.
Colfax International, 2013.

[4] Z. Piotrowski, A. Wyszogrodzki, and
P. Smolarkiewicz. Towards Petascale Simulation of
Atmospheric Circulations with Soundproof Equations.
Acta Geophysica, 59:1294–1311, 2011.

[5] K. Rojek and L. Szustak. Parallelization of EULAG
Model on Multicore Architectures with GPU
Accelerators. Lect. Notes in Comp. Sci., 7204:391–400,
2012.

[6] K. Rojek, L. Szustak, and R. Wyrzykowski.
Performance analysis for stencil-based 3D MPDATA
algorithm on GPU architecture. Proc. PPAM 2013,

Lect. Notes in Comp. Sci., in print:11, 2013.

[7] P. Smolarkiewicz. Multidimensional Positive Definite
Advection Transport Algorithm: An Overview. Int. J.
Numer. Meth. Fluids, 50:1123–1144, 2006.

[8] J. Treibig, G. Wellein, and G. Hager. Efficient
multicore-aware parallelization strategies for iterative
stencil computations. Journal of Computational

Science, 2:130–137, 2011.

[9] M. Wittmann, G. Hager, J. Treibig, and G. Wellein.
Leveraging shared caches for parallel temporal
blocking of stencil codes on multicore processors and
clusters. Parallel Process. Lett., 20 (4):359–376, 2010.

[10] R. Wyrzykowski, K. Rojek, and L. Szustak.
Model-Driven Adaptation of Double-Precision Matrix
Multiplication to the Cell Processor Architecture.
Parallel Computing, 38:260–276, 2012.

[11] R. Wyrzykowski, K. Rojek, and L. Szustak. Using
Blue Gene/P and GPUs to Accelerate Computations
in the EULAG Model. Lect. Notes in Comp. Sci.,
7116:662–670, 2012.

