
Towards Efficient Decomposition
and Parallelization of MPDATA
on Hybrid CPU-GPU Cluster

Roman Wyrzykowski, Lukasz Szustak(B), Krzysztof Rojek, and Adam Tomas

Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa, Poland
{roman,lszustak,krojek,atomas}@icis.pcz.pl

Abstract. EULAG (Eulerian/semi-Lagrangian fluid solver) is an
established computational model for simulating thermo-fluid flows across
a wide range of scales and physical scenarios. The multidimensional
positive definite advection transport algorithm (MPDATA) is among the
most time-consuming components of EULAG.

New supercomputing architectures based on multi- and many-core
processors, such as hybrid CPU-GPU platforms, offer notable advantages
over traditional supercomputers. In our previous works we considered
adaptation of 2-dimensional (2D) MPDATA computations to a single
CPU-GPU node. The main goal of this paper is to study tenets of opti-
mal parallel formulation of 3D MPDATA on heterogeneous CPU-GPU
cluster. Such supercomputer architecture requires not only a different
philosophy of memory management than traditional massively parallel
supercomputers, but also a comprehensive look at load balancing in the
heterogeneous co-processing computing model.

In this paper we propose an approach to implementation of 3D
MPDATA algorithm on hybrid CPU-GPU cluster, using a mixture of
MPI, OpenMP, and CUDA programming standards. This approach
focuses on the donor-cell numerical scheme, and is based on a hierarchical
decomposition including level of cluster, as well as distribution of com-
putations between CPU and GPU components of each node, and within
CPU and GPU devices. We discuss preliminary performance results for
the proposed approach running on a single cluster node consisting of two
AMD Opteron Interlagos CPUs and one or two NVIDIA Fermi GPUs.

1 Introduction

The Multidimensional Positive Definite Advection Transport Algorithm
(MPDATA) is among the most time-consuming calculations of the EULAG
model [8]. In our previous works [7,11] we proposed two decompositions of 2D
MPDATA computations, which provide adaptation to CPU and GPU archi-
tectures separately. The achieved performance results showed the possibility of
achieving high performance both on CPU and GPU platforms.

In this paper, we develop a hybrid CPU-GPU version of 2D MPDATA, to
fully utilize all the available computing resources by spreading computations

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 457–464, 2014.
DOI: 10.1007/978-3-662-43880-0 52, c© Springer-Verlag Berlin Heidelberg 2014

458 R. Wyrzykowski et al.

across the entire machine. When adapting MPDATA to modern hybrid architec-
tures, consisting of GPU and CPU components, the main challenge is to provide
high performance for each component, taking into account their properties, as
well as efficient cooperation.

The proposed approach to parallelization of the 2D MPDATA algorithm is
the starting point for the implementation of 3D MPDATA on hybrid CPU-GPU
clusters. We propose a hierarchical decomposition including the level of clus-
ter, as well as distribution of computations between CPU and GPU components
of each node, and within CPU and GPU devices. Hybrid clusters offer a fast
solution, but understanding the parallel trade-offs is crucial for providing effi-
ciency of computations. These architectures allow for creating many thousands
of threads, which has a significant influence on performance of parallel codes [3].

2 Architecture Overview

In our research we use the Cane cluster located at the Poznan Supercomputing
and Networking Center, Poland [1]. This machine includes 227 nodes, connected
with each other by the InfiniBand QDR network. Each node consists of two
AMD Opteron 6234 CPUs (codenamed Interlagos) and one or two NVIDIA
Tesla M2050 GPUs, as well as 64 GB of the main memory. The architecture of
a single CPU-GPU node is shown in Fig. 1.

Each of AMD Opteron 6234 CPUs [1] includes two dies, each containing 6
cores and 8 MB of L3 cache. All dies are connected by AMD HyperTransport
links. For the clock frequency of 2.4 GHz, the peak performance of these two
CPUs is respectively 460.8 GFlop/s and 230.4 GFlop/s in a single and double
precision.

The NVIDIA Tesla M2050 GPU [5] is based on the Fermi architecture, and
includes 14 streaming multiprocessors, each consisting of 32 CUDA cores with
48 KB of shared memory and 16 KB of L1 cache. It gives a total number of 448
available CUDA cores with the clock rate of 1147 MHz. It provides the peak
performance of 1.03 TFlop/s and 512 GFlop/s in a single and double precision,
respectively. This graphics accelerator card includes 3 GB of global memory with
the peak bandwidth of 148.4 GB/s. All the accesses to the global memory go
through the L2 cache of size 512 KB.

3 Introduction to MPDATA Algorithm

The MPDATA algorithm belongs to the group of nonoscillatory forward in time
algorithms [8]. The 2D MPDATA is based on the first-order-accurate advection
equation:

∂Ψ

∂t
= − ∂

∂x
(uΨ) − ∂

∂y
(vΨ), (1)

where x and y are space coordinates, t is time, u, v = const are flow velocities,
and Ψ is a nonnegative scalar field. Equation (1) is approximated according to

Towards Efficient Decomposition and Parallelization of MPDATA 459

Fig. 1. Architecture of hybrid CPU-GPU node

the donor-cell scheme, which for the (n + 1)-th time step (n = 0, 1, 2, . . .) gives
the following equation:

Ψ∗
i,j = Ψn

i,j − [F (Ψn
i,j , Ψ

n
i+1,j , Ui+1/2,j) − F (Ψn

i−1,j , Ψ
n
i,j , Ui−1/2,j)]

− [F (Ψn
i,j , Ψ

n
i,j+1, Vi,j+1/2) − F (Ψn

i,j−1, Ψ
n
i,j , Vi,j−1/2)]. (2)

Here the function F is defined in terms of the local Courant number U :

F (ΨL, ΨR, U) ≡ [U]+ΨL + [U]−ΨR, (3)

U ≡ uδt

δx
; [U]+ ≡ 0, 5(U + |U |); [U]− ≡ 0, 5(U − |U |). (4)

The same definition is true for the local Courant number V .
The first-order-accurate advection equation can be approximated to the sec-

ond-order in δx, δy and δt, defining the advection-diffusion equation:

∂Ψ

∂t
= − ∂

∂x
(uΨ) +

(δx)2

2δt
(|U | − U2)

∂2Ψ

∂x2

− ∂

∂y
(vΨ) +

(δy)2

2δt
(|V | − V 2)

∂2Ψ

∂y2
(5)

− UV δxδy

δt

∂2Ψ

∂x∂y
.

The antidiffusive pseudo velocities ũ and ṽ in respectively x and y directions are
defined according to the following equations:

ũ =
(δx)2

2δt
(|U | − U2)

1
Ψ

∂Ψ

∂x
− UV δxδy

2δt

1
Ψ

∂Ψ

∂y
, (6)

460 R. Wyrzykowski et al.

ṽ =
(δy)2

2δt
(|V | − V 2)

1
Ψ

∂Ψ

∂y
− UV δxδy

2δt

1
Ψ

∂Ψ

∂x
. (7)

Therefore, in order to compensate the first-order error of Eq. (1), once again
the donor-cell scheme is used but with the antidiffusive velocity ũ = −ud in
place of u, and with the value of Ψ∗ already updated in Eq. (2) in place of Ψn.
It allows us to compute values of Ψ for the (n + 1)-th time step.

4 2D MPDATA Decomposition

In this section, we shortly present adaptation of the 2D MPDATA algorithm to
the hybrid CPU-GPU architecture, providing trade-off between communication
and computation within its components. This approach is based on the efficient
use of a single node.

The MPDATA algorithm is based on updating each point of the grid with
values from neighboring grid points. Typically the neighborhood structure is
fixed, in which case it is called a stencil [2,9]. Our previous research show that
MPDATA is a memory-bound algorithm [7,12].

The main task here is the decomposition of MPDATA grid into CPU and
GPU domains. We propose the basic strategy of grid partitioning, that assigns
two stripes of grid rows to CPU and GPU. Data transfers between CPU and GPU
domains are minimized by providing extra computations within both domains.
Therefore, the CPU has to compute more rows, because some rows, which orig-
inally were assigned to the GPU domain only, are now duplicated in the CPU
domain, and vice versa. This approach allows us to avoid communication between
CPU and GPU domains within each time step of the MPTADA algorithm, since
CPU and GPU components compute their domains separately. As is shown in
Fig. 2, the CPU-GPU cooperation, including communication and synchroniza-
tion, is required only after each time step.

When adapting MPDATA to the hybrid CPU-GPU architecture, the next task
is to provide efficient performance for each component. Hence, two different adap-
tations of the MPDATA algorithm to CPU and GPU processors are required. Each
of these adaptations takes into account constraints for the memory bandwidth.

Fig. 2. Scheme of cooperation between CPU and GPU components running the
MPDATA algorithm

Towards Efficient Decomposition and Parallelization of MPDATA 461

For CPU, this goal can be achieved by taking advantage of cache memory
reusing, as high as possible. This requires to apply an appropriate block decom-
position strategy, when the intermediate results of computations for a single
block are placed in the cache memory. Only the final results are returned to
the main memory. Such an approach is commonly called the temporal blocking
[4,10]. Computations within each block are distributed across available CPU
cores, and the SIMD processing is applied inside each core. Each AMD Inter-
lagos CPU contains groups of cores (or dies) connected each other by AMD
HyperTransport links [1]. Dies have direct access to their own cache memory,
and indirect access to caches of other dies. To eliminate inter-cache communi-
cations among dies, at the cost of extra computations, we use exactly the same
grid decomposition as in the case of adaptation of MPDATA to CPU-GPU archi-
tecture. Another advantage of this approach is possibility to apply the NUMA
“first-touch” policy.

For GPUs, their global memory allows us to decrease the intensity of access to
the main memory, since results of GPU computations performed within a single
time step can be stored in GPU only. As a result, performance restrictions due
to the memory bandwidth saturation can be alleviated, and the high density of
computing resources is better utilized.

The GPU parallelization of MPDATA is based on three levels of GPU par-
allel hierarchy: (i) overlapping data transfers between the host memory and
GPU global memory with GPU computations; (ii) parallel computations across
threads running on GPU cores; (iii) vectorization within a GPU thread. The
first level requires to apply an appropriate decomposition of data domain into
streams, in order to use the streams processing mechanism. It allows us to alle-
viate bandwidth constraints of PCIe connection between CPU and GPU. The
second level concerns parallel processing of GPU threads, which are assembled
into CUDA blocks. The last level allows for increasing the amount of compu-
tations within a single GPU thread, and reducing overheads of access to GPU
global and shared memories.

5 2D MPDATA Performance Results

Table 1 presents execution times of the 2D MPDATA algorithm for 500 time
steps and different sizes of grid, using a single node of the target cluster. The
achieved performance results correspond to different configuration including the
basic serial version running on a single CPU core without using block decompo-
sition and SIMD vectorization, and parallel versions using configurations with
1CPU, 2CPUs, 1GPU, and 2GPUs, as well as hybrid configuration with 2CPUs
and 2GPUs. In all the parallel versions, the block decomposition and SIMD vec-
torization techniques are applied to speedup MPDATA computations over the
basic serial version, which does not use these techniques. The speedup of parallel
versions over the basic serial version is shown in Fig. 3. For all the grid sizes,
the hybrid version allows us to achieve the highest performance. In particular,
for the grid of size 4096 × 4096, it gives speedup of 93.46 over the serial version.

462 R. Wyrzykowski et al.

Table 1. Execution times of 2D MPDATA for 500 time steps

size serial 1CPU 2CPUs 1GPU 2GPUs 2CPUs+2GPUs

1024 × 1024 99.24 5.21 2.55 2.81 1.47 1.38
2048 × 2048 384.68 19.14 9.66 10.83 5.48 4.74
3072 × 3072 869.91 40.91 20.78 26.12 13.07 9.45
4096 × 4096 1568.22 74.50 37.81 53.99 22.43 16.78

Fig. 3. Speedup of parallel versions over basic serial version

For the largest grid size, the hybrid version is about 2.25 times faster in com-
parison with using 2CPUs, and about 1.33 times faster than the 2GPUs version.

6 3D MPDATA Decomposition

The achieved performance results show a high perspectives of using the hybrid
architecture to the MPDATA algorithm in the 3D case, as well. Following these
results, in this section we propose an approach to adaptation of 3D MPDATA
to the CPU-GPU cluster, employing both CPU and GPU computing resources.
Our approach is based on a hierarchical decomposition including level of cluster,
as well as distribution of computations between CPU and GPU components of
each node, and within CPU and GPU devices. To take advantage of CPU-GPU
cluster, the MPI standard is used across nodes, while OpenMP and CUDA are
applied within each node.

This adaptation consists of two basic steps. The first step (Fig. 4a) takes into
account the decomposition on the cluster level, and provides data distributions
across a 2D mesh of nodes. Each node consists of a group of components, which
include CPU and GPU resources. The second step takes into account the data
decomposition within a single CPU-GPU node (Fig. 4b). This step is based on
the approach previously developed for 2D MPDATA.

The 3D MPDATA algorithm performs simulations determined by size n×m×
l of the grid. In case of simulations in the EULAG numerical weather prediction
[6], the size of grid is usually specified by the following constraints: n = 2 ∗ m,

Towards Efficient Decomposition and Parallelization of MPDATA 463

Fig. 4. Grid decomposition of 3D MPDATA onto CPU-GPU cluster

l ≤ 128, and n,m >> l. Such a 3D grid is mapped on a 2D mesh of CPU-GPU
nodes of size r×c. As a result, the MPDATA grid is partitioned into subdomains
of size np ×mp × l, where each node is responsible for computing within a single
subdomain, and:

np =
n

r
; mp =

m

c
. (8)

Every subdomain is further partitioned into two parts, assigned to CPU and
GPU resources separately. This partitioning is given by the following equations:

SGPU = (G ∗ np) × mp × l, (9)

SCPU = (C ∗ np) × mp × l, (10)

where parameters G and C characterize GPU and CPU parts, respectively, sat-
isfying the following constraints:

G + C = 1; G,C ∈ [0; 1]. (11)

Currently, to provide the load balancing between CPU and GPU components,
values of G and C parameters are evaluated in an empirical way. However, a
dynamic load balancing model will be developed in future work, allowing us to
increase the portability of MPDATA code across a variety of hybrid clusters.

7 Conclusions and Further Work

New strategies for memory and computing resources management allow us to
ease memory bounds, and better exploit the theoretical floating point efficiency
of hybrid architectures. The hybrid computing is a promising approach for
increasing performance of numerical simulations of geophysical flows using the
EULAG model.

We propose the basic strategy of partitioning the MPDATA grid, that assigns
two stripes of grid rows to CPU and GPU components. Thus, data transfers
between CPU and GPU domains are minimized by providing extra computa-
tions within both domains. Moreover, two separate adaptations of MPDATA
algorithm to CPU-GPU hybrid architecture are required, to better utilize fea-
tures of hybrid architectures.

464 R. Wyrzykowski et al.

For 2D grids, the hybrid version gives the best results for all the grid sizes,
providing speedup of 93.46 over the serial version of the MPDATA algorithm.
The achieved performance of 2D MPDATA gives a high perspectives of using
the hybrid programming model to the 3D MPDATA case, as well.

Our parallelization of the EULAG model is still under development. The
future work will focus on investigation of MPDATA parallelization based on the
proposed 3D grid decomposition. Apart from GPU architectures, the particular
attention will be paid to other accelerators such as Intel Xeon Phi.

Acknowledgments. This work was supported by the Polish National Science Centre
under grant no. UMO-2011/03/B/ST6/03500.

References

1. AMD and GPGPU cluster, https://hpc.man.poznan.pl/modules/resourcesection/
item.php?itemid=61

2. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51(1), 129–159 (2009)

3. Kurzak, J., Bader, D., Dongarra, J.: Scientific Computing with Multicore and
Accelerators. Chapman & Hall/CRC , Boca Raton (2010). (Chapman & Hall/CRC
Computer and Information Science Series)

4. Nguyen, A., Satish, N., Chhugani, J., Changkyu, K., Dubey, P.: 3.5-D blocking opti-
mization for stencil computations on modern CPUs and GPUs. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–13 (2010)

5. NVIDIA Best Practices Guide, http://developer.nvidia.com/
nvidia-gpu-computing-documentation

6. Piotrowski, Z., Wyszogrodzki, A., Smolarkiewicz, P.: Towards petascale simula-
tion of atmospheric circulations with soundproof equations. Acta Geophys. 59,
1294–1311 (2011)

7. Rojek, K., Szustak, L.: Parallelization of EULAG model on multicore architec-
tures with GPU accelerators. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 391–400. Springer,
Heidelberg (2012)

8. Smolarkiewicz, P.: Multidimensional positive definite advection transport algo-
rithm: an overview. Int. J. Numer. Meth. Fluids 50, 1123–1144 (2006)

9. Venkatasubramanian, S., Vuduc, R.: Tuned and wildly asynchronous stencil kernels
for hybrid CPU/GPU systems. In: ICS, pp. 244–255 (2009)

10. Wittmann, M., Hager, G., Treibig, J., Wellein, G.: Leveraging shared caches for
parallel temporal blocking of stencil codes on multicore processors and clusters.
Parallel Process. Lett. 20(4), 359–376 (2010)

11. Wyrzykowski, R., Rojek, K., Szustak, L.: Model-driven adaptation of double-
precision matrix multiplication to the cell processor architecture. Parallel Comput.
38, 260–276 (2012)

12. Wyrzykowski, R., Rojek, K., Szustak, �L.: Using blue gene/P and GPUs to acceler-
ate computations in the EULAG model. In: Lirkov, I., Margenov, S., Waśniewski,
J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 670–677. Springer, Heidelberg (2012)

https://hpc.man.poznan.pl/modules/resourcesection/item.php?itemid=61
https://hpc.man.poznan.pl/modules/resourcesection/item.php?itemid=61
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation

	Towards Efficient Decomposition and Parallelization of MPDATA on Hybrid CPU-GPU Cluster
	1 Introduction
	2 Architecture Overview
	3 Introduction to MPDATA Algorithm
	4 2D MPDATA Decomposition
	5 2D MPDATA Performance Results
	6 3D MPDATA Decomposition
	7 Conclusions and Further Work
	References

