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Abstract. EULAG (Eulerian/semi-Lagrangian fluid solver) is an estab-
lished computational model for simulating thermo-fluid flows across a
wide range of scales and physical scenarios. The multidimensional pos-
itive defined advection transport algorithm (MPDATA) is among the
most time-consuming components of EULAG.

The main aim of our work is to design an efficient adaptation of the
MPDATA algorithm to the NVIDIA GPU Kepler architecture. We focus
on analysis of resources usage in the GPU platform and its influence on
performance results. In this paper, a performance model is proposed,
which ensures a comprehensive analysis of the resource consumption
including registers, shared, global and texture memories. The perfor-
mance model allows us to identify bottlenecks of the algorithm, and
shows directions of optimizations.

The group of the most common bottlenecks is considered in this work.
They include data transfers between host memory and GPU global mem-
ory, GPU global memory and shared memory, as well as latencies and
serialization of instructions, and GPU occupancy. We put the emphasis
on providing a fixed memory access pattern, padding, reducing divergent
branches and instructions latencies, as well as organizing computation
in the MPDATA algorithm in order to provide efficient shared memory
and register file reusing.

Keywords: GPGPU · CUDA · EULAG · Stencil · MPDATA ·
Geophysical flows · Parallel programming

1 Introduction

The multidimensional positive definite advection transport algorithm(MPDATA)
is among the most time-consuming calculations of the EULAG model [2,9]. In
our previous works [8,10,11] we proposed two decompositions of 2D MPDATA
computations, which provide adaptation to CPU and GPU architectures sepa-
rately. The achieved performance results showed the possibility of achieving high
performance both on CPU and GPU platforms.

In the paper [12], we developed a hybrid CPU-GPU version of 2D MPDATA,
to fully utilize all the available computing resources by spreading computations
across the entire machine. It is the starting point for our current work.
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In this paper, we focus on parallelization of the 3D MPDATA algorithm,
and analysis of resources usage in the GPU platform and its influence on the
performance. We detect the bottlenecks and develop the method of efficient
distribution of computation across CUDA kernels. Proposed method is based on
analysis of memory transactions between GPU global and shared memory.

2 Related Works

Reorganizing stencil calculations to take full advantage of memory hierarchies
has been the subject of much investigation over the years.

Modern processor architectures tends to be inherently unbalanced concerning
the relation of theoretical peak performance versus memory bandwidth. To reveal
performance constraints for MPDATA running on hybrid architectures, we will
follow the simple methodology presented in [4], where attainable performance is
estimated based on flop and byte ratio.

Memory optimizations for stencil computations have principally focused on
different decomposition strategies, like space and blocking techniques [3], that
attempt to exploit locality by performing operations on data blocks of a suitable
size before moving on to the next block.

The issue of adapting the EULAG model to GPU accelerators was discussed
in [5], where the PGI Accelerator compiler was used for the automatic par-
allelization of selected parts of EULAG on NVIDIA GPUs, including the 2D
MPDATA algorithm. However, disadvantage of this approach is relaying entirely
on the automatic parallelization, without any efforts to guide the parallelization
process taking into account characteristics of target architectures.

In the paper [6], a 3.5D-blocking algorithm that performs 2.5D-spatial block-
ing of the input grid into on-chip memory for GPUs was discussed. We also
employ 2.5D blocking technique to increase data locality, but we propose alter-
native solution for memory-bounded kernels, which is based on minimizing the
number of global memory transactions, rather than applying 3.5D-blocking.

The quite large set of techniques of CUDA optimizations including data
parallelism, threads deployment and the GPU memory hierarchy was discussed
in [1]. In this work, the authors manually evaluated the best configurations of 2D
stencil computations. We offer model-based solution, which automatic configures
the code, making our solution more portable.

3 Kepler NVIDIA Architecture

The NVIDIA GTX TITAN GPU [7] is based on the Kepler architecture, and
includes 14 streaming multiprocessors (SMX), each consisting of 64 double pre-
cision units (DP units) with 48 KB of shared memory and 16 KB of L1 cache.
It gives a total number of 896 DP units with the clock rate of 870 MHz. It pro-
vides the peak performance of 1.5 TFlop/s in a double precision. This graphics
accelerator card includes 6 GB of global memory with the peak bandwidth of
288 GB/s. All the accesses to the global memory go through the L2 cache of size
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1.5 MB. This GPU supports two modes of access to data: 32-bit access mode and
64-bit access mode. The number of load/store unit per SMX is 32, so it gives a
possibility to load/store 256 bits per clock cycle per SMX.

4 3D MPDATA Overview

Our research includes Multidimensional Positive Definite Advection Transport
Algorithm (MPDATA), which is one of the main part of the EULAG geophysical
model EULAG (EUlerian/semi-LAGrangian) can be used to simulate: weather
prediction; ocean currents; areas of turbulence; urban flows; gravity wave dynam-
ics; micrometeorology; cloud microphysics and dynamics.

The MPDATA algorithm belongs to the group of nonoscillatory forward in
time algorithms [9]. The 3D MPDATA is based on the first-order-accurate advec-
tion equation:

∂Ψ

∂t
= − ∂

∂x
(uΨ) − ∂

∂y
(vΨ) − ∂

∂z
(wΨ), (1)

where x, y and z are space coordinates, t is time, u, v, w = const are flow
velocities, and Ψ is a nonnegative scalar field. Equation (1) is approximated
according to the donor-cell scheme, which for the (n + 1)-th time step (n =
0, 1, 2, . . .) gives the following equation:
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(2)

Here the function F is defined in terms of the local Courant number U :

F (ΨL, ΨR, U) ≡ [U ]+ΨL + [U ]−ΨR, (3)

U ≡ uδt

δx
; [U ]+ ≡ 0, 5(U + |U |); [U ]− ≡ 0, 5(U − |U |). (4)

The same definition is true for the local Courant numbers V and W .
The first-order-accurate advection equation can be approximated to the

second-order in δx, δy and δt, defining the advection-diffusion equation. Such
transformation is widely described in literature. For the full description of the
main important aspects of the second order equation of MPDATA, the reader is
referred to [9].

The 3D MPDATA algorithm consists of 17 stencils that are processed by
CUDA kernels on the GPU. Figure 1 shows the mechanism of kernel processing.
We employ widely used method of 2.5D blocking [6], where two dimensional
CUDA blocks are responsible for computing XY planes of matrices. The loop
inside kernel is used to traverse the grid in the Z dimension. Since, the MPDATA
algorithm requires to store 3 XY planes at the same time, we use queue of planes
placed in registers and shared memory, which firstly copies data from GPU global
memory to registers, and then moves data between registers and shared memory.
This method allows us to increases data locality significantly.



148 K. Rojek et al.

Fig. 1. Kernel processing

5 Analysis of 3D MPDATA with NVIDIA Visual Profiler

The starting point of our considerations is when the 17 stencils are distributed
across 6 CUDA kernels. Our analysis begins with detection of bottlenecks of the
algorithm. We examine the following potential bottlenecks:

– data transfers between GPU global memory and host memory;
– instructions latency (stall analysis);
– arithmetic, logic, and shared memory operations;
– configuration of the algorithm taking into account size of CUDA block and

GPU occupancy.

Our approach is based on the stream processing [12] (Fig. 2) where each
stream is responsible for computing a sequence of 3 instructions including: data
transfer from host to GPU that occurs only once (before computations); execu-
tion the sequence of 6 kernels; data transfer from GPU to host memory (occurs
after every time step). Since all streams are processed independently, the compu-
tation and data transfers can be overlapped. Table 1 shows the time consump-
tion analysis of MPDATA for the 100 time steps and grid of size 392. Three
streams are used in the simulation. The HTOD abbreviation means the data
transfer from host to device, while the DTOH means data transfer in the opposite
direction.

Based on this analysis, the data transfer takes relatively short time (about
18 % of all execution time). Stream processing decreases execution time by about
0.9 s, which is 2 times more than time of data transfer. We can simply con-
clude here, that data transfer between host and GPU is not a bottleneck of the
MPDATA algorithm.

Now we focus on the analysis of computations. Our research include the most
complex part of the MPDATA algorithm. Based on the NVIDIA Visual Profiler,
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Fig. 2. Utilization of GPU resources by MPDATA

Table 1. Time consumption analysis of the 3D MPDATA algorithm

Operation Time [s] Ratio

HTOD 0.023 0.008
DTOH 0.453 0.172
Computation 3.051 1.16
Final time 2.631 1

we estimate two the most time consuming kernels, which are called kernels B and
C. These kernels take about 57 % of the execution time. Each of this kernel has
5 input and 3 output matrices and is responsible for computing 3 stencils with
37 flops per each. The flop/B ratio for each kernel is 37 ∗ 3/((5 + 3) ∗ 8) = 1.73.
However, the minimum flop/B ratio required by NVIDIA GTX TITAN to achieve
maximum performance is 5.2 [7]. The another conclusion is that the kernels are
strongly memory-bounded!

The next analysis is devoted to the stall reasons analysis. Figure 3 shows the
main reason of stalls for kernels B and C including execution dependency, data
request, texture memory operations, synchronization, and instruction fetching.
Based on the analysis, stalls are mostly caused by the execution dependency

Fig. 3. Analysis of stall reasons for kernels B and C
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(about 33 %). Such kind of stalls limits GPU utilization and results from the
complex structure of the MPDATA algorithm. The execution dependencies can
be hidden by increasing GPU occupancy. However, the kernels B and C use
about 47 KB of shared memory for each CUDA block, executing only 768 active
threads per SMX. It means, that the GPU occupancy is only 37.5% for the both
kernels. So the final conclusion is that the GPU utilization is limited by shared
memory usage!

6 Performance Analysis Based on GPU Global Memory
Transactions

We propose a performance analysis based on GPU global memory transactions.
Such analysis is particularly helpful, when algorithm is memory-bounded. In our
approach, the following scenarios are considered:

– distribution of computation across 2 kernels;
– compression of computation within 1 kernel.

The compression of computation increases hardware requirements for CUDA
blocks, and decreases the GPU occupancy. Hence, the second scenario allows
us to execute at most 512 active threads per SMX. It means, that the GPU
occupancy is even lower than for the first scenario, and it is only 25 %.

At the beginning of our analysis we need to estimate the cost of access to
matrix for each scenario. We assume, that CUDA block is of size g1×g2, matrices
are processed according with Fig. 1, halo areas are of size 1, and are placed from
the four sides of CUDA block (Fig. 4). The number of elements, that need to be
transferred from GPU global memory to shared memory or register files is given
by the following formula:

Sel = g1 ∗ g2 + 2 ∗ g2 + 2 ∗ g1. (5)

Taking into account 64-bits access mode, which can be simply enabled on
Kepler NVIDIA architecture by calling cudaDeviceSetSharedMemConfig()

Fig. 4. XY plane of CUDA block with its halo areas
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routine with cudaSharedMemBankSizeEightByte parameter, we can estimate
the number of required transactions to transfer a single CUDA block:

Str = g1 ∗ top(g2/32) + 2 ∗ top(g2/32) + 2 ∗ g1, (6)

where top(x) returns rounded up value of x. In this approach, addresses of ver-
tical halo areas are not coalesced.

Table 2 shows the cost of access to matrix for the first scenario. In this analy-
sis, the plane is of size 392×256. Transactions overhead is ratio between required
number of transactions to transfer matrix and the naive number of transactions
required to transfer matrix assuming unlimited size of shared memory (without
halo area). The naive number of transactions for plane of size 392 × 256 is 3136.
Based on our analysis, the minimum number of transactions for the first sce-
nario is 3136 ∗ 185.2% = 5808. This analysis also allows us to estimate the most
suitable size of CUDA block, which is 6 × 128.

Table 2. Analysis of GPU global memory transactions: first scenario

g1 g2 Blocks per Transactions Transactions Transactions
plane per block per plane overhead [%]

6 128 132 44 5808 185.2
5 128 158 38 6004 191.45
3 256 131 46 6026 192.16
4 128 196 32 6272 200
8 96 147 46 6762 215.63
3 128 262 26 6812 217.22
12 64 132 52 6864 218.88
7 96 168 41 6888 219.64

A similar analysis is made for the second scenario and the results of this
analysis are shown in Table 3. The best configuration of CUDA block is 4 × 64,
while the transactions overhead is 250%.

Finally, we estimate the cost of access to all matrices for the both scenarios.
Figure 5 shows flow diagram for kernels B and C. There are 5 input matrices
for the kernel B and 6 input matrices for the kernel C. Additionally, there are
2 output matrices per each kernel. Transactions overhead for each matrix is
185.2%, so the total cost of access to all matrices is (5+6+2+2)∗1.852 = 27.78.
The flow diagram for the second scenario is shown in Fig. 6. Here we have 5

input and 3 output matrices. Transactions overhead is 250%. So, the total cost
of access to all matrices is (5 + 3) ∗ 2.5 = 20.

Table 4 shows the summary of MPDATA analysis, taking into account con-
sidered scenarios. Based on our analysis, it is expected to achieve about 1.39
speedup using the second scenario over the first scenario. So the conclusion is
that, we should compress kernels B and C into a single kernel.
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Table 3. Analysis of GPU global memory transactions: second scenario

g1 g2 Blocks per Transactions Transactions Transactions
plane per block per plane overhead [%]

4 64 392 20 7840 250
2 128 392 20 7840 250
3 64 524 16 8384 267.35
2 96 588 16 9408 300
2 64 784 12 9408 300
8 32 392 26 10192 325
1 256 392 26 10192 325
7 32 448 23 10304 328.57

Fig. 5. Flow diagram for kernels B and C

Fig. 6. Flow diagram for BC kernel

Table 4. Summary of MPDATA analysis

Kernels B and C Kernel BC Ratio

Occupancy 37.50 % 25.00 % 1.5
Access overhead 185.20 % 250.00 % 0.74
# of matrices 15 8 1.85
Total cost of access 27.78 20 1.39

7 Performance Results

Table 5 presents performance results for both scenarios. In our tests we used a
single NVIDIA GTX TITAN GPU with Intel Core i7–3770 CPU. The MPDATA
algorithm was tested for the grid of size 392×256×64. The achieved results are
far from the peak performance due to the complexity of the algorithm, strong
instructions and data dependencies, and shared memory size limitations.
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Table 5. Performance results for both scenarios

Kernel Mflops per Time per Performance Speedup
scenario scenario [ms] [Gflop/s]

B and C 963.4 15.47 62.29 1
BC 847.8 10.47 80.95 1.48

Our method of stencils distribution across CUDA kernels allows for increas-
ing the MPDATA performance by about 1.48 times. Such a speedup is a little
higher than we expected due to the fact that compression of kernels brings some
additional advantages, which were not taken into account in our analysis. The
main reason of a higher speedup is possibility of applying the common subex-
pression elimination to reduce the number of MPDATA instructions. It allows
us to reduce the number of operation from 963.4 Mflops to 847.8 Mflops.

8 Conclusions and Future Work

The proposed methods allow for estimating “the best” number of kernels, as
well as easy selection of CUDA block size for each kernel. The compression of
stencils into kernels and improvement of GPU occupancy are mutual excluded.
However, the analysis of GPU global memory transactions allows us to find the
compromise between these two kinds of optimizations. Moreover, the compres-
sion of kernels permits for decreasing the amount of computation. The proposed
approach to kernel processing with queues of data placed in registers and shared
memory increases the data locality significantly. The performance of kernels in
our approach is limited by the number of memory transactions and latency
of arithmetic operations. The GPU utilization is mostly limited by the size of
shared memory.

Our parallelization of the EULAG model is still under development. The
future work will focus on expansion of the implementation across a cluster of
CPU-GPU nodes. The particular attention will be paid to implementation of
MPDATA using OpenCL in order to ensure the code portability across different
devices, as well as development of autotunig mechanisms aiming at providing
performance portability.
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