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Abstract. The main goal of this paper is the suitability assessment of
the hStreams programming library for porting a real-life scientific appli-
cation to heterogeneous platforms with Intel Xeon Phi coprocessors. This
emerging library offers a higher level of abstraction to provide effective
concurrency among tasks, and control over the overall performance. In
our study, we focus on applying the FIFO streaming model for a par-
allel application which implements the numerical model of alloy solid-
ification. In the paper, we show how scientific applications can benefit
from multiple streams. To take full advantages of hStreams, we propose
a decomposition of the studied application that allows us to distribute
tasks belonging to the computational core of the application among two
logical streams within two logical/physical domains. Effective overlap-
ping computations with data transfers is another goal achieved in this
way. The proposed approach allows us to execute the whole application
3.5 times faster than the original parallel version running on two CPUs.

Keywords: Intel MIC - Hybrid architecture + Numerical modeling of
solidification - Heterogeneous programming - Hstreams library - Task
and data parallelism

1 Introduction

Efficient concurrency on the task level is difficult to achieve, especially on hetero-
geneous platforms. An emerging effort on the way to meet this challenge is the
hStreams programming framework [1-3], a new heterogeneous streaming library.
It is based on a simple FIFO streaming model, and supports concurrency across
nodes, among tasks within a node, and between data transfers and computation.
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This framework is aimed at making it easier to port and tune task-parallel
codes by offering such features as [1]: (i) separation of concerns, (ii) sequential
semantics, (iii) task concurrency, (iv) pipeline parallelism, and (v) unified inter-
face to heterogeneous platforms. In particular, the first feature addresses key
programming productivity issues by allowing a separation of concerns between
(1) the expression of functional semantics and disclosure of task parallelism, and
(2) the performance tuning and control over mapping tasks onto a platform. As a
result, while creators of scientific algorithms receive something simple and intu-
itive, code tuners may work long after them, having the freedom to control over
the code execution without the need for application domain expertise. A detailed
comparison of hStreams with other heterogeneous programming environments
such as OpenMP, OmpSs, Offload Streams and CUDA Streams is presented in
paper [1].

Heterogeneous platforms become increasingly popular in many application
domains [2—4]. The combination of using a general-purpose CPUs combined with
specialized computing devices (e.g., GPU, Intel Xeon Phi or FPGA) enabled in
many cases for accelerating an application by significant amounts [4-6]. However,
realizing these performance potentials remains a challenging issue.

The main goal of this paper is the suitability assessment of the hStreams
framework for porting a real-life scientific application to heterogeneous platforms
with Intel Xeon Phi coprocessors. We focus on utilizing the FIFO streaming
model in a parallel application which implements a numerical model of alloy
solidification. This application has been already studied in our previous work [7],
where we developed an approach for porting and optimizing the application on
computing platforms with a single Intel Xeon Phi accelerator [4]. The proposed
scheme of parallelization and workload distribution was implemented using the
offload interface [7], dedicated directly for the Intel MIC architecture.

The contribution of this paper to the area of co-design technologies are as fol-
lows: (1) demonstration of applicability of the hStreams programming framework
for porting a complex application to a heterogeneous platform in a relative quick
and easy way, which justifies the conclusion that using the hStreams framework
increases the level of abstraction for the code development in hybrid hardware
environments; (2) hardware-aware performance tuning of the resulting code with
its experimental evaluation showing practically the same performance as in the
case of the low-level offload interface.

The material of the paper is organized as follow. Section2 provides an
overview of the hStreams library, while Sect. 3 introduces the numerical model
of solidification, and the idea of its parallelization on platforms containing Intel
Xeon Phi coprocessors. The next section outlines the most important details
of mapping the solidification application onto heterogeneous streams. Section 5
presents performance results achieved for the proposed approach, while Sect.6
concludes the paper and addresses future works.
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2 Introduction to Hetero Streams Library

2.1 Overview of hStreams

The hetero Streams library (hStreams) [1,2] allows stream programming in
heterogeneous platforms consisting of Intel Xeon CPUs and Intel Xeon Phi
coprocessors. Stream programming model assumes existence of one or more
FIFOs abstractions, where computation jobs are submitted on the computing
entities.

Before proceeding further, the introduction is needed for two key definitions
that hStreams uses: source is a place where work is enqueued to be performed,
and sink is a place where work is executed. Source and sink can either share
resources of the same processor or reside on separate ones. In a typical scenario,
source resides on an Intel Xeon CPU, while sinks are present on the same CPU,
as well as on Intel coprocessors connected to the main processor over PCle.

Memory resources shared between source and sinks are called logical
buffers. Logical buffers are registered by the application on the source.
Once the hStreams run-time is aware of the buffer, a pointer to a memory
location anywhere inside that buffer is recognized as a handle, and can be
used for performing data transfers or compute actions involving that buffer.
A logical buffer created by the user may have instantiations in many logical
domains beside the source. Those instantiations of the buffer are called phys-
ical buffers. A logical buffer must have a corresponding physical buffer on the
logical domain where it is intended to be used (either as an operand of a data
transfer or a compute action).

Actions are enqueued in a FIFO queue called stream. From the operating
systems point of view, the stream is a subset of processor cores with access to
the local memory. There are three categories of actions: task computations,
memory transfers and synchronization. The task computation is performed
entirely on the sink side. Memory transfers are performed between buffers on
the source and their sink instantiations. Transfers are defined by the direction
(source to sink or sink to source) and source-side buffer addresses. Synchroniza-
tion actions involve the sink endpoint of a stream waiting on a collection of
events, triggered by the completion of actions enqueued in any stream.

Streams are organized into logical domains. Memory buffers are shared
by all streams inside a single logical domain, while being disjointed from other
logical domains. One or more logical domains belong to a physical domain. The
physical domain can be treated as physical device: an Intel Xeon Phi coprocessor
or an Intel Xeon server. This approach allows us to have the same API for a
coprocessor and server, while also sharing the same memory on server.

Internally, hStreams has implicit dependency management. By default a task
enqueued in a stream depends on the previous task in this stream and on all
buffers used by this task, but does not depend on memory transfers of buffers not
related to the previous task. Dependencies can also be controlled explicitly by the
application - for example, the application can wait for completion of one or more
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previously defined events. Such dependency management allows programmers to
hide communication behind computation.

Two levels of API are exposed by hStreams - the higher level App API and
lower level Core API. The former offers a subset of the hStreams functionality
and is designed to allow a novice user to quickly start writing programs. Its
productivity is boosted by helper functions and common building blocks. The
Core API - on the other hand - exposes the full functionality of hStreams, and is
targeted at a more advanced user. Currently, the hStreams library supports Intel
Xeon CPUs and the first generation of Intel Xeon Phi coprocessors. Support for
other configurations may be added in the future. The hStreams framework was
created by Intel and is maintained on the public repository. Its latest version
and source code is available at https://github.com/0lorg/hetero-streams.

2.2 Comparison of hStreams with OpenMP

In this section, we briefly compare hStreams with OpenMP as the most popular
parallel programming standard, which offers support for heterogeneous comput-
ing [8]. The most obvious differences between them is that hStreams represents
a library-based API, while OpenMP is a compiler-based language extension [1].
An important advantage of hStreams is independence from the compilers. In this
case, the utilization of new features requires only updating the library, unlike
OpenMP where new mechanisms are available only after updating the compiler
to the latest version. For many programmers who prefer to change compilers
rarely, the use of the library-based extensions seems to be most attractive.

Unlike OpenMP, the Hetero Streams library provides an uniform interface
for heterogeneous platforms [1,2]. Both environments are based on the host-
centric model, where one of the host threads transfers data and computation to
the platform components. However, in hStreams all the resources of a platform
are handled in uniform way, whie OpenMP separates constructs used to assign
the application workload to host and remote devices. The current version of the
hStreams library gives also the possibility for offloading computation to remote
nodes over fabric. The great advantage of hStreams over OpenMP is the ability to
subdividing a device, that allows executing multiple offload regions concurrently.

The differences between hStreams and OpenMP are noticeable also in data
management. Both environments give the possibility to transfer data from mem-
ory of one device to another. In hStreams, buffers used for data movements have
to be allocated before starting the transfer, while in OpenMP data allocations
can be performed explicitly or implicitly. Opposite to OpenMP, the hStreams
framework provides also an efficient support for memory allocations in different
memory types [1].
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3 Application: Numerical Model of Solidification and
Parallelization on Platforms with Intel MIC

3.1 Numerical Model

The phase-field method is a powerful tool for solving interfacial problems in
materials science [9]. It has mainly been applied to solidification dynamics [10],
but it has also been used for other phenomena such as viscous fingering [11], frac-
ture dynamics, [12], and vesicle dynamics [9]. The number of scientific papers
related to the phase-field method grows since the 90 years of XX century, reach-
ing for the last 7 years more than 400 positions (according to the SCOPUS
database) [13].

In the numerical examples studied in this paper, a binary alloy of Ni-Cu is
considered as a system of the ideal metal mixture in the liquid and solid phases.
The numerical model [14] refers to the dendritic solidification process in the
isothermal conditions with constant diffusivity coefficients for both phases. It
allows us to use the field-phase model defined by Warren and Boettinger [14].
In this model, the growth of microstructure during the solidification process is
determined by solving a system of two PDEs [14,15], which define the phase
content ¢ and concentration ¢ of the alloy dopant (one of the alloy components).

The resulting numerical scheme belongs to the group of forward-in-time iter-
ative algorithms [7]. The application code consists of two main blocks of com-
putation, which are responsible for determining either the phase content (Fig. 1)
or the dopant concentration. In the model studied in the paper, values of ¢ and
c are calculated for nodes uniformly distributed across a square domain. How-
ever, the presented approach, which is based on the generalized finite difference
method, allows for solving PDEs not only for regular, but also irregular grids.
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Fig. 1. Phase content for the simulated time ¢ = 2.75 x 10™3s (original code)
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3.2 Idea of Parallelization for Platforms with MIC

In the studied application, computation are interleaved with writing partial
results to a file. In the original version (Fig.2a), parallel computations are exe-
cuted for subsequent time steps, while writing results to the file is performed after
the first time step, and then after every package of 2000 time steps. Figure 2b
shows the idea of adapting the application to platforms with a single Intel Xeon
Phi. In this approach, the coprocessor is employed to perform major parallel
workloads, while the rest of application is assigned to CPU, as not requiring
massively parallel resources. In consequence, writing data to the file is the respon-
sibility of CPU, while the coprocessor provides execution of parallel regions of
the code.

timesteps

. parallel computations transfer of input data to Phi
. writing outcomes to the file transfer of output data from Phi

Fig. 2. Idea of adapting solidification application to platforms with Intel MIC [7]

At the beginning, all the input data are transferred from CPU to the
coprocessor, which then starts computation for the first time step. After finishing
it, all the results are transferred back to CPU. During this transfer, coprocessor
starts computations for the next package of 2000 time steps. At the same time,
CPU begins writing results to the file, immediately after receiving outcomes
from the coprocessor. Such a scheme is repeated for every package of 2000 time
steps. A critical performance challenge here is to overlap workload performed
by the coprocessor with data movements. To meet this challenge, data transfers
between CPU and Xeon Phi, writing data to the file, as well as computation
have to be performed simultaneously.

4 Porting with hStreams

4.1 Mapping Application Workload onto Heterogeneous Streams

The hStreams library supports the task parallelism by creating multiple streams.
This advantage can be efficiently applied for the proposed idea of adapting the
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solidification application to platforms with a single Intel MIC. Our approach
distinguishes the two main tasks: (i) writing outcomes to the file, and (ii) run-
ning parallel computation. These tasks are mapped onto two logical streams
created within two logical domains. This solution allows for executing streams
on different computing resources, such as processor and coprocessor.

The idea of mapping the application on heterogeneous streams is illustrated
in Fig. 3. While the first stream is responsible for parallel computation performed
for subsequent packages of 2000 time steps, the second one has to provide trans-
fers of outcomes from the first stream, in order to write them further to the file.
These streams are assigned respectively to the coprocessor and CPU.

P esosastonssd At et ety aes P A g
e W ST I S I Weeerans .

Stream_2 : eee

(i-1)*2000 ¥2000 (i+1)¥2000 (i+2)¥2000
time steps

.T insert tasks into streams I:I? notofication about tasks completition

transfer of output data from Stream_1 to Stream_2

Fig. 3. Mapping solidification application onto heterogeneous streams

Because of mutual dependencies between the execution of streams, their syn-
chronizations becomes a crucial issue. The hStreams library offers two scenarios
for solving this issue that correspond to various ways of filling queues of streams.
The first way requires to fill the FIFO queue before the stream execution, while
the second one refill the FIFO queue during the execution of stream. In both
cases, the source process is responsible for the management of queues. For the
first way, the stream synchronization is based on the completion of events that
have to be inserted into the streams before execution. The second way, called
the active synchronization, employs the source process to provide the synchro-
nization of streams during execution. In this scenario, the source process waits
for the completion of tasks of a stream, in order to insert subsequent tasks to
queues, and then run streams. In our approach, the second scenario is chosen
(see Fig. 3) as more suitable for the proposed idea of parallelization. As a results,
the synchronization points occur after every package of 2000 time steps.

Selecting an appropriate method for providing efficient data transfers is
important for the overall performance. In the proposed approach, data are trans-
ferred excluding the source process. It allows us to reduce the communication
path from the default scheme Stream_1 — source — Stream_2 to the shorter
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one, where data are transferred directly between streams: Stream_1 — Stream_2.
The task of data movement that downloads outcomes from the logical domain
of Stream_1 is inserted into queue of Stream_2.

To overlap computation with data transfers, the double buffering techniques
is applied: the first buffer is used to provide computation while the second one is
responsible for data movement of outcomes of the previous time steps (Fig. 3).
However, a right policy of hStreams data dependencies has to be applied for
enabling this optimization. The default police HSTR_DEP_POLICY_CONSERVATIVE
prevents the simultaneous execution of tasks for data transfers and computation.
To solve this problem, the policy HSTR_DEP_POLICY_BUFFERS has to be set in
order to ensure the asynchronous execution of these tasks using different buffers.

By defauult, streams are executed on coprocessors. Since Stream_2 should
run on the CPU site, the hStreams Core API has to be used to provide such a
mapping. This API allows programmers to perform a more advanced manage-
ment of the hStream library.

4.2 Data Parallelization Within Streams

The original CPU version of the application uses the OpenMP standard to uti-
lize cores/threads, based on the OpenMP construction #pragma omp parallel
for. Since the Intel Xeon Phi coprocessors supports OpenMP, the application
code can be rather easily ported to this platform. To ensure the best overall
performance without significant modifications in the source code, we use several
compiler-friendly optimizations, and empirically determine the best OpenMP
setup for the loop scheduling.

The utilization of vector processing is crucial for ensuring the best perfor-
mance on Intel Xeon Phi. The quickest way to achieve this goal is the compiler-
based automatic vectorization. However, in the studied case the innermost loop
cannot be vectorized safely, mainly because of data dependencies. To solve this
problem, we propose to change slightly the code by adding temporary vectors
responsible for loading the necessary data from the irregular memory region, and
than providing SIMD computations (see our previous work [5,7]).

5 Performance Results

In this study, we use the platform [16] equipped with two Intel Xeon E5-2699 v3
CPUs (Haswell-EP), and Intel Xeon Phi 7120P coprocessor (Knight Corner).
The benchmarks are compiled using the Intel icpc compiler (v.15.0.2) with the
same optimization flags. All tests are performed for modeling solidification appli-
cation using the double precision floating-point format, 110000 time steps, and
grid with 4000000 nodes (2000 nodes along each dimensions = and y).

Table 1 presents the comparison of the execution times obtained for: (i) orig-
inal CPU parallel version of the solidification application, (ii) optimized parallel
version based on the offload interface (see our previous work [7]), and (iii) new
parallel code programmed with hStreams. Both the offload- and hStreams-based
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versions correspond to the proposed adaptation of the studied application to
platforms with a single Intel Xeon Phi.

The total execution time of the original version (see Fig. 2a) includes the sum
of execution times necessary for performing parallel computation and writing
outcomes to the file. The proposed approach (see Fig.2b) allows us to hide
more than 99 % of computations behind data movements, for both the offload-
and hStreams-based versions, and finally accelerate the whole application about
3.50x. Comparing the execution times of the hStreams- and offload-based codes,
we can see that the difference is negligible, since it is equal to 0.28 %.

Table 1. Performance results for different versions of the solidification application

Tasks
Code version data movements | parallel computation | Time Speedup
original CPU CPU 641 min 32s | -
offload-based CPU MIC 183 min 08s | 3.50x
hStreams-based | CPU MIC 183 min 39s | 3.49x

6 Conclusions and Future Works

The hStreams programming library is a promising solution for the exploration
of emerging multi- and manycore architectures that become increasingly com-
plex, hierarchical and heterogeneous. It is expected that the potential of using
hStreams on current and future platforms will be manifested for a wide range
of real-life applications. Our research allow us to conclude that the hStream
library enables for porting such applications on modern architectures, including
Intel MIC, in a relatively quick and easy way.

The streaming abstraction is one of advantages of this library which enables
for mapping concurrent tasks onto computing resources. A rich functionality
of hStreams, including synchronization scenarios and overlapping tasks, makes
this library programmer-friendly, and increases the level of abstraction for the
code development. The performed benchmark confirms that the hStreams library
allows for achieving the performance results at the same level as the offload
model, dedicated directly for the Intel MIC architecture. At the same time, it is
worth to mention that the proposed adaptation of the solidification application
to platforms with Intel MIC plays the main role in accelerating computations,
while the hStreams library and offload interface are “only” tools that allows us
to reach this goal.

The performance results achieved in this study provide the basis for further
research on the development and optimization of code. The primary direction
of our future work is to utilize hStreams for porting the studied application on
heterogeneous platforms with more than one Intel Xeon Phi coprocessor, and
taking advantage of all the computing resources to process together the appli-
cation workload. Also, we plan to use our application as a valuable benchmark
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for comparing hStreams with other programming models and languages inter-
faces, and in particular, with the OpenMP 4.x support [17] for heterogeneous
computing and task-parallelism.
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