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Abstract. Modern heterogeneous computing platforms have become
powerful HPC solutions, which could be applied for a wide range of appli-
cations. In particular, the hybrid platforms equipped with Intel Xeon
Phi coprocessors offers performance advantages over conventional homo-
geneous solutions based on CPUs, while supporting practically the same
parallel programming model. However, there is still an open issue how sci-
entific applications can utilize efficiently the hybrid platforms equipped
with Intel coprocessors.

In this paper we propose a method for porting a real-life scientific
application to computing platforms with Intel Xeon Phi. We focus on the
parallel implementation of a numerical model of solidification, which is
based on the generalized finite difference method. We develop a sequence
of steps that are necessary for porting this application to platforms
with accelerators, assuming no significant modifications of the code. The
proposed method considers not only efficient data transfers that allow
for overlapping computations with data movements, but also takes into
account an adequate utilization of cores/threads and vector units. The
developed approach allows us to execute the whole application 3.45 times
faster than the original parallel version running on two CPUs.

Keywords: Intel Xeon Phi · Numerical model of solidification · Appli-
cation porting · Optimization of data movements

1 Introduction

In the last years, it becomes evident [7,16] that future designs of microprocessors
and HPC systems will be hybrid and heterogeneous in nature. An example of
this trend are hybrid platforms equipped with the Intel Xeon Phi coprocessors
[9,10]. These heterogeneous solutions rely on integration of two major types of
components in various proportion to speed up computation intensive applica-
tions: (i) multicores CPU technology, as well as (ii) special-purpose hardware
and massively parallel accelerators.
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The Intel Xeon Phi coprocessor [4,9] is the first product based on Intel Many
Integrated Core (Intel MIC) architecture. It includes a large number of cores with
wide vector processing units. It offers notable performance advantages over con-
ventional homogeneous solutions based on CPUs, and supports practically the
same parallel programming model. Although this architecture is designed for
massively parallel applications, there is still an open issue how scientific applica-
tions can utilize efficiently the hybrid platforms equipped with Intel coprocessors.

In this study, we present an example of solving this problem by proposing
a method for porting a real-life scientific application to computing platforms
with Intel Xeon Phi. We focus on the parallel implementation of a numerical
model of the dendritic solidification process in the isothermal conditions [1,14].
In this model, the growth of microstructure during the solidification process is
determined by solving a system of two partial differential equations (PDEs).
These equations define the phase content, and concentration of components in
an alloy. The solutions of PDEs is obtained using the Meshless Finite Difference
Method (with 2D geometry) and an explicit scheme of calculations.

In this paper, we present a sequence of steps that are necessary for porting
application to platforms with accelerators, assuming no significant modifications
of the code. In the proposed adaptation, the coprocessor is responsible for exe-
cuting the major parallel workloads, while the CPU host is used only to execute
the remaining part of the application, that do not require massively parallel
resources. The main challenges here include not only providing efficient data
transfers that overlap computations with data movements, but also ensuring an
adequate utilization of cores/threads and vector units. The proposed method
allows us to execute computations 3.45 faster than the original parallel code
running on two CPUs.

This paper is organized as follows. Section 2 overviews the Intel Xeon Phi
architecture, while Sect. 3 shows details of a target platform. Section 4 introduces
the numerical model of solidification, which is based on the generalized finite
difference method. Section 5 describes the idea of adaptation of the solidification
algorithm to computing platforms with Intel Xeon Phi accelerators. Section 6
outlines a sequence of steps that are necessary for porting the main workloads
of the application to the Intel Xeon Phi coprocessor, following the idea proposed
in the previous section. Section 7 presents performance results obtained for the
proposed method, while Sect. 8 concludes the paper.

2 Intel Xeon Phi Coprocessor Overview

The Intel Xeon Phi coprocessor is the first product based on the Intel Many
Integrated Core Architecture (Intel MIC Architecture). Tt targets a variety of
HPC segments [9,10,17] such as scientific research, physics, chemistry, biology,
and climate simulation [12,13,17].

The coprocessor is equipped with more than 50 cores, caches, memory con-
trollers, and PCIe client logic [4,5,11]. All these components are connected
together by the bidirectional ring interconnect. Cores are clocked at about 1 GHz,
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and allow for running up to 4 hardware threads per each core. An integral part
of every core is the vector processing unit, that supports a new 512-bit SIMD
instruction set called Intel Initial Many-Core Instructions. Each core has 128
vector registers 512-bit wide, and comes complete with a private L1 and L2
caches that are kept fully coherent by the ring interconnect. The coprocessor
has over 6 GB of own on-board GDDR5 main memory (maximum 16 GB). The
access to the main memory is realized by 6 or 8 memory controllers, that are
evenly distributed on the bidirectional bus. The Intel Xeon Phi coprocessors are
delivered in form factor of a PCIe additional device.

The Intel MIC architecture provides a general-purpose programming envi-
ronment similar to that provided for Intel CPUs [9]. It supports the source-code
portability between CPU and coprocessor platforms, that gives possibility to run
the same code using different devices: Intel CPU or Intel Xeon Phi. Program-
mers can write source code using most popular programming languages like C,
C++ and Fortran. This architecture supports also traditional parallel program-
ming standards such as OpenMP, Intel Thread Building Blocks, Intel Cilk Plus,
C++11 threads and MPI.

One of the basic methods to utilize Intel Xeon Phi computing resources is
programming in the native mode [9]. In this mode, a source code is compiled
on the host using the cross compiler to generate binary for the MIC architec-
ture. Then, the executable application file can be copied and run directly on the
coprocessor. Coprocessors support also the heterogeneous programming model
known as the offload mode [9]. In this mode, the programmer select code sections
to run on the Intel Xeon Phi. This model uses simple pragmas/directives to spec-
ify code sections and data to be offloaded to the target device. The application
starts on the CPU side, while selected regions are automatically transferred and
run on the target device. If for some reason, the Intel Xeon Phi is unavailable,
the code regions are executed on the CPU.

3 Target Platform

In this study, we use the platform [10] equipped with two Intel Xeon E5-2695 v2
processors (Ivy Bridge EP architecture), and the top-of-the-line Intel Xeon Phi
7120P coprocessor. Every processor consists of 12 cores clocked at 2.4 GHz, and
128 GB DDR3-1866 main memory. The coprocessor contains 61 cores clocked at
1.238 GHz, and 16 GB of on-board memory. Two CPUs offer 2 × 230.4 Gflop/s
of theoretical peak performance totally, assuming double precision floating-point
operations, while a single coprocessor gives 1.2 Tflop/s. The values of peak per-
formance are given taking into account the usage of SIMD vectorization (words
256- or 512-bit wide for CPU or coprocessor, respectively). Table 1 presents a
summary of this platform.
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Table 1. Specification of test platform [10]

2 × Intel Xeon E5-2695 V2 Intel Xeon Phi 7120P

Number of cores 2 × 12 61

Number of threads 2 × 24 244

SIMD length [bits] 256 512

Freq. [GHz] 2.4 1.2

Peak for DP [Gflop/s] 2 × 230.4 1208

L1/L2 cache [KB] 64/256 64/512

LLCa [MB] 2 × 30 28.5

Memory size [GB] 128 16

Memory bandwidth [GB/s] 2 × 59.7 352
aLLC (Last Level Cache) corresponds to either L3 cache for CPU, or aggregated
L2 caches for Intel Xeon Phi.

4 Introduction to Numerical Model of Solidification

In the analyzed numerical examples, a binary alloy of Ni-Cu is considered as a
system of the ideal metal mixture in the liquid and solid state. The numerical
model [1,14] refers to the dendritic solidification process in the isothermal condi-
tions with constant diffusivity coefficients for the liquid and solid phases. It allows
to use the field phase model defined by Warren and Boettinger [14]. In this model,
the growth of microstructure during the solidification process is determined by
solving a system of two PDEs [1,8,14]. The first equations defines the phase con-
tent φ:
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where: Mφ is defined as the solid/liquid interface mobility, ε is a parameter
related to the interface width, η is the anisotropy factor, HA and HB denotes
the free energy of both components, cor is the stochastic factor which models
thermodynamic fluctuations near the dendrite tip.

The second equation defines the concentration c of the alloy dopant, which
is one of components of the alloy:
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where: Dc is the diffusion coefficient, Vm is the specific volume, R is the gas
constant. In this model, the Meshless Finite Difference Method [2,6] is used to
obtain the values of partial derivatives with respect to dimensions x and y, that
occur in Eqs. 1 and 2.

In order to parallelize computations with a desired accuracy, the explicit
scheme is applied with a small value of the time step Δt = 1e − 7s:
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where θ is a function of derivatives of φ-variable.
These computations correspond to the forward-in-time algorithms [16]. The

application code consists of two main blocks of computations, which are respon-
sible for determining either the phase content φ and the dopant concentration
c. In the model, the values of φ and c are calculated for nodes uniformly distrib-
uted across the square region, where 751 nodes along every dimension are chosen
as sufficient for providing a required accuracy in the example examined in this
paper. The values of derivatives at all nodes (Eqs. 3 and 4) are determined at
every time step of calculations. All these computations are the main workload
for the resulting numerical algorithm.

5 Idea of Adapting the Solidification Application to
Computing Platforms with Intel Xeon Phi

In this section, we consider the idea of adaptation of the solidification application
to computing platforms with Intel Xeon Phi accelerators. The main goal of our
study is to accelerate calculations using Intel Xeon Phi. We propose to employ
the coprocessor to perform the major parallel workloads, and use CPU only to
execute the rest of application that do not require massively parallel resources.
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As a result, the computations that correspond to Eqs. 3 and 4 are performed
using the Intel Xeon Phi coprocessor.

In the studied application, computations are interleaved with writing partial
results to a file. In the original version, parallel computations are executed for
subsequent time steps, while writing results to the file is performed after the first
time step, and then after every 100 time steps. The CPU does not perform any
computations during writing results to the file. Figure 1 illustrates execution of
the computational core of the studied application using CPU only.

Fig. 1. Implementation of the original version of solidification algorithm

We propose to use Intel Xeon Phi for executing all operations associated with
the computational core, and make the CPU responsible for writing partial results
to the file. This requires to perform adequate data transfers between processor
and coprocessor. Since the studied application belongs to the forward-in-time
algorithms, where subsequent time steps depend on the previous ones, all the
input data required for the first time step are transferred to the coprocessor,
while others input data necessary for subsequent time steps are computed by
the coprocessor. So after finishing computations for the first time step, and then
for every package of 100 time steps, the coprocessor transfers its outcomes back
to the host processor that is responsible for writing these results to the file.

A critical performance challenge here is to overlap workload performed by
Intel Xeon Phi with data movements. To reach this goal, we propose to perform
simultaneously data transfers between the CPU and Intel Xeon Phi, writing data
to the file, as well as computations. This idea is illustrated in Fig. 2.

After finishing computations for the 1st time step, both transfers of the par-
tial results from the coprocessor to CPU and computations for the next package

Fig. 2. Idea of parallelization of numerical modeling of solidification using both Intel
CPU and Intel Xeon Phi
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of 100 time steps are started in the same time. Then during computations for the
package of 100 time steps, and after transferring data, the CPU writes required
data to the file. Such a scheme repeats for every package of 100 time steps, and
gives possibility for overlapping of computations and data movements only when
the time of computations will be not shorter than the time of data movements.

6 Porting Application to Intel Xeon Phi

This section presents a sequence of steps that are necessary for porting the main
workloads of the application to the Intel Xeon Phi coprocessor, following the
idea proposed in the previous section. The first challenge includes overlapping
the following operations: (i) data writing to the file on the CPU side, (ii) com-
putations on the coprocessor side, (iii) data transfers between the coprocessor
and CPU. The second challenge concerns an adequate utilization of Intel Xeon
Phi computing resources. At the same time, we assume no significant modifi-
cations of the code, especially for the computing kernels. In this study, we do
not provide any improvements for data writing to the file. Furthermore, only
the massively parallel regions of the application are transferred to the coproces-
sor, while the remaining parts are executed on the CPU side. Such a distribution
allows for an appropriate utilization of both the coprocessor designed for parallel
computations, and the CPU that features a more general usage.

6.1 Optimization of Data Movements

Determining a set of data that have to be transferred between the coprocessor
and CPU is the first step for porting the studied application to Intel Xeon Phi.
Since the coprocessor is used in the offload mode, the data transfers through the
PCIe bus are crucial for the overall performance [4,5]. Generally speaking, the
total amount of data transfers between the coprocessor and processor has to be
maximally reduced.

This aim is addressed by the proposed idea of adaptation presented in Sect. 5.
Following this idea, the required input data are transferred to the coprocessor
only once before computations. Then, the appropriate portion of data has to be
exchanged after every package of 100 time steps (see Fig. 2).

Selecting an appropriate method for providing efficient data transfers is
important for the overall performance. A basic solution to provide the desired
efficiency is to ensure a linear (or continuous) access for the required data. It
is achieved by choosing an appropriate data structure. Typically, there are two
major possibilities for laying out memory [3]: array of structures (AoS) and
structure of arrays (SoA). The original version of the studied application uti-
lizes the AoS option. In this case, a periodic access to the required data and/or
copying some unnecessary data are necessary for transferring data to and from
the coprocessor. To avoid these overheads in the proposed approach, we migrate
to the SoA option in order to guarantee both the linear access, and transferring
only the necessary data.
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for(/*...*/)

{

// Parallel computation for subsequent time steps on Intel MIC side

#pragma offload target(mic) signal(&offload)

/*...*/

// Asynchronous receiving data from coprocessor

#pragma offload_transfer target(mic)

/*...*/

// Asynchronous writing data to the file on CPU side

/*...*/

// Waiting for computation finishing

#pragma offload_wait target(mic) wait(&offload)

/*...*/

}

Fig. 3. Asynchronous data transfers between CPU and coprocessor

To overlap computations and data movements, the asynchronous transfers
between the CPU and coprocessor is utilized. The offload mode supports such a
solution be applying an adequate sequence of pragmas, as shown in Fig. 3.

The next step is associated with exploration of multiple buffering techniques
[15]. To provide simultaneous computations and communications, it is enough to
apply two buffers on the coprocessor side, that are responsible for keeping results
of subsequent packages of 100 time steps. When one buffer is used for saving
results during computation of a given package of 100 time steps, another one is
employed for transferring results of the previous package from the coprocessor
to CPU. This is achieved at the cost of some extra memory space. Moreover, the
double buffering technique is also deployed on the CPU side, which is necessary
to overlap data writing to the file with data transfers from the coprocessor to
CPU. When data writing to the file utilizes one buffer, the results are transferred
to the next one, and so on. In order to improve the overall performance, the
memory regions for the buffers are allocated only once for the coprocessor side,
and then reused multiple times. It allows us to reduce the number of memory
allocations in the offload mode that usually generates a significant performance
overhead [4,5].

6.2 Multithreading and Vectorization Optimizations

The previous optimization steps give possibility to overlap computation, com-
munication, as well as data writing to the file. Now the main constraint is to
make the time required by computation for a package of 100 time steps no longer
then the time of data writing (see Fig. 2). To reach this goal, both cores/threads
and vector units should be successfully utilized.
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The original version of the studied application employs the OpenMP paral-
lel programming standard to utilize cores/threads. This version uses the basic
work-sharing construction #pragma omp parallel for to assign work to all the
available threads. Since the Intel Xeon Phi coprocessors supports the OpenMP
standard, the application code can be successfully executed without any modi-
fications. As a result, all the available threads of the Intel Xeon Phi coprocessor
can be utilized for the joint problem solving. To ensure the best overall perfor-
mance assuming no significant modifications of the code, different setups for the
scheduling clauses are evaluated, including static, dynamic, and guided.

The next step required for porting the application to Intel Xeon Phi is associ-
ated with applying the vectorization of computations. The compiler-based auto-
matic vectorization [9] seems to be the most convenient method for achieving
this goal. The automatic vectorization is provided by the Intel Compiler that
automatically uses SIMD instructions available in the Intel Streaming SIMD
Extensions. The compiler detects operations in the program that can be done in
parallel, and then converts sequences of operations to parallel vector operations.
In practice, the automatic vectorization usually occurs when the Intel compiler
generates packed SIMD instructions through unrolling the innermost loop.

However, in the studied case the innermost loop can not be vectorized safely
because of complexity of computations as well as data dependencies. In fact, cal-
culating a single output element in the innermost loop requires a set of input ele-
ments with dynamically determined indexes. An example of such a situation is pre-
sented in Fig. 4a. In this case, the automatic vectorization of computations fails
because of an irregular data access, unpredictable during compilation. To solve
this problem, we propose to change slightly the code by adding temporary vec-
tors responsible for loading the necessary data from the irregular memory region.
It is enough to provide SIMD computations. This idea is illustrated in Fig. 4b.

Fig. 4. Idea of vectorization: (a) scalar computation based on irregular data access,
(b) vectorization of computation using temporary vectors
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Additionally, appropriate keywords and directives should be provided as com-
piler hints, in order to improve the efficiency of auto-vectorization. The auto-
vectorization is also assisted with applying an appropriate data alignment for
the vectorized data. This forces the compiler to create data objects in memory
aligned to specific byte boundaries.

7 Performance Results

In this section, we present performance results obtained for the approach
described in Sects. 5 and 6, assuming double precision floating point numbers.
All the benchmarks are compiled using the Intel icpc compiler (v.15.0.2) with
the optimization flag -O3. The resulting code is executed in the offload mode
on the platform equipped with the Intel Xeon E5-2695 V2 CPU and Intel Xeon
Phi 7120P coprocessor, while the original version of the solidification application
uses parallel resources of two CPUs. All the tests are performed for 2626 time
steps, and the 564 001 nodes (751 nodes along dimensions x and y).

In our benchmarks, we evaluate different loop scheduling options (static,
dynamic, auto and guided) with different configuration for the size of chunks.
For all the performance tests, we achieve similar performance results with dif-
ferences below 5 %. The best performance corresponds to the static scheduling
with equal-sized chunks of loop assigned to threads.

We check also the impact of the auto-vectorization for the overall perfor-
mance. For the vectorized regions of the code, the computation are accelerated
of about 2 times. This relatively small performance gain is mainly caused by
overheads required for providing the irregular data access (see Fig. 4). The total
performance gain of vectorization decreases when not vectorizable regions are
taken into account. In consequence, the final speedup of the code with vector-
ization is 1.6 against the scalar code.

Table 2 presents the performance results for modeling solidification obtained
for the original and proposed (optimized) codes. The total execution of the basic
version takes 335 s. It includes the aggregated time of computations (244 s) and
the aggregated time of data writing (94 s). In this case, all computations are not
overlapped with writing output data to the file (see Fig. 1).

As compared with the original version, the optimized code performs all the
workloads 3.45 times faster. Its execution takes 97 s, and includes computations,
data writing, and transfers from and to the coprocessor. The aggregate time
required to write data to the file is the same as in the case of the original version
(94 s), while the aggregate time of computations (80 s) is shorter about 3 times.
The transfer of all the input data takes 2.41 s, and occurs only at the beginning of
the application execution, while transfers of partial results from the coprocessor
takes totally 0.07 s only.

For about 81.8 % of the application execution time, data movements are
overlapped with computations. Moreover, almost all the computations performed
by the Intel Xeon Phi device are overlapped with data movements, and this
allows us to hide 99.26 % of computations behind data writing.
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Table 2. Performance results for modeling solidification using original and optimized
codes

Original version Optimized version

Total Time [s] 335 97

Aggregate time of computations [s] 242 80

Aggregate time of data writing [s] 94 94

Time of input data transfers from CPU to Intel
Xeon Phi [s]

- 2.41

Aggregate time of output data transfers from
Intel Xeon Phi to CPU [s]

- 0.07

8 Conclusions

Using computing platforms with Intel Xeon Phi is a promising direction for
improving the efficiency of parallel computations in the numerical modeling of
solidification. Porting applications to the Intel MIC architecture requires to use
the native or offload mode, where the latter proved to be a better solution
for the studied application. In this paper, we propose the method for porting
and optimizing the application for modeling alloy solidification on computing
platforms with Intel Xeon Phi. In comparison with the original parallel version
of the code, the optimized version performs all the workloads 3.45 times faster.

The offload mode is an efficient solution for porting large codes that consist of
both massively parallel and sequential regions to platforms with Intel MIC. Using
the coprocessor to perform major parallel workloads, and employing the CPU
only to execute the rest of an application give a strong possibility to accelerate
the whole application. Such a workload distribution allows for an appropriate
utilization of both the coprocessor designed for massively parallel computations,
and the CPU that is designed for the general usage.

The Intel MIC architecture provides a general-purpose programming envi-
ronment that allows for quick and easy code porting. However, the utilization
of the offload mode requires to implement data transfers between the processor
and coprocessor efficiently. The solution of this issue is provided by the proposed
method of the adaptation of the application for modeling alloy solidification.

This method allows us to overlap (i) data writing to the file on the CPU
side, (ii) computations on the coprocessor side, and (iii) data transfers between
the coprocessor and CPU. As a result, for about 81.8 % of the application exe-
cution time, data movements are overlapped with computations. When consid-
ering only the time of computations, the proposed adaptation allows us to hide
99.26 % of computations behind data movements. Such a high degree of over-
lapping is achieved by applying multithreading and vectorization optimizations.
This allows us to reduce the time of executing the parallel workload by the
coprocessor, and makes it no longer then the time of data movements.
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