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Abstract. SMP/NUMA systems are powerful HPC platforms which
could be applied for a wide range of real-life applications. These systems
provide large capacity of shared memory, and allow using the shared-
variable programming model to take advantages of shared memory for
inter-process communications and synchronizations. However, as data
can be physically dispersed over many nodes, the access to various data
items may require significantly different times. In this paper, we face
the challenge of harnessing the heterogeneous nature of SMP/NUMA
communications for a complex scientific application which implements
the Multidimensional Positive Definite Advection Transport Algorithm
(MPDATA), consisting of a set of heterogeneous stencil computations.

When using our method of MPDATA workload distribution, which
was successfully applied for small-scale shared memory systems with sev-
eral CPUs and/or accelerators, significant performance losses are notice-
able for larger SMP/NUMA systems, such as SGI UV 2000 server used
in this work. To overcome this shortcoming, we propose a new islands-
of-cores approach. It exposes a correlation between computation and
communication for heterogeneous stencils, and enables an efficient man-
agement of trade-off between computation and communication costs in
accordance with the features of SMP/NUMA systems. In consequence,
when using the maximum configuration with 112 cores of 14 Intel Xeon
E5-4627v2 3.3 GHz processors, the proposed approach accelerates the
previous method more then 10 times, achieving about 390 Gflop/s, or
approximately 30% of the theoretical peak performance.

1 Introduction

In the last years, it appears evident [7,22] that emerging computing platforms
will combine multi- and manycore architectures. In particular, this trend is
noticeable in an environment of large-scale computations (High Performance
Computing, HPC) where supercomputers are built with massively parallel com-
ponents [24], such as multicore processors and manycores accelerators. The most
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common solutions for such systems are based on the cluster architectures, that
are delivered by many vendors. More than 80% of supercomputers in the TOP500
list for November 2016 refer to these systems (http://top500.org).

However, despite the considerable popularity of clusters, other powerful com-
puting platforms are also perceptible in HPC environments. Among them are sys-
tems based on the SMP/NUMA (symmetric multiprocessor/non-uniform mem-
ory access) architectures [4], which are usually built around high-performance
networks as distributed shared memory (DSM) systems. DSM is a form of mem-
ory architecture where physically separated memories can be addressed as one
logically shared address space. These systems provide extremely large capac-
ity of shared memory, and are able to achieve high levels of memory through-
put performance. At the same time, because data can be physically dispersed
over many nodes, the access time for different data items may well be different
which explains the term non-uniform data access. In SMP/NUMA architectures,
the parallelism can be successfully expressed with the OpenMP library, or the
MPI standard - a common solution for clusters. Also, the mixture of MPI and
OpenMP is possible. However, is worthwhile to mention that OpenMP is capable
of itself to fully utilize such systems without demanding more complex message
passing operations [5,23] required by MPI.

One of leading vendors of these systems is SGI, that has been delivering
SMP/NUMA architectures for more than 20 years. Its newest SMP/NUMA prod-
uct series, SGI UV [11] is based on Intel multicore processors and the high-speed
NUMAlink system interconnect, offering up to thousands of cores in a single
system which shares large main memory capacity. An example of using the SGI
UV 2000 server for accelerating a complex real-world application, MapReduce
is presented in [2], where a topology-aware placement algorithm is proposed to
speed up the data shuffling phase of MapReduce. The first generation of SGI
UV platforms is applied in [3] to parallelize the Generalized Conjugate Residual
(GCR) elliptic solver with preconditioner, using a mixture of MPI and OpenMP.
In order to place properly all MPI processes and OpenMP threads on the under-
lying hardware, a specialized scheduler was developed to take into account the
network topology. Apart from numerical applications, the SGI UV 2000 systems
are also reported to be efficiently used in other areas, such as computation on
graphs [25] and combinatorial optimization problems [1].

In this paper, we face the challenge of efficient utilization of SMP/NUMA sys-
tems in practice, for a rather complex scientific application. The application we
study implements the Multidimensional Positive Definite Advection Transport
Algorithm (MPDATA) [13,14], which consists of a set of heterogeneous stencils.
Besides the GCR solver, MPDATA is the second major part of the dynamic
core of the EULAG (Eulerian/semi-Lagrangian) geophysical model [15]. It is an
established numerical model developed for simulating thermo-fluid flows across
a wide range of scales and physical scenario. In particular, it can be used in
numerical weather prediction, simulation of urban flows, turbulences, and ocean
currents [9,16,17].

http://top500.org
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In our previous works [18–20], we successfully developed a new version of
MPDATA, dedicated to small-scale shared memory systems with several proces-
sors and/or accelerators. In particular, we proposed a new (3+1)D decomposition
of MPDATA computations that allows us to significantly reduce the main mem-
ory traffic. This implementation provides a much better usage of capabilities of
novel CPUs and Intel Xeon Phi coprocessors. However, although the proposed
new strategy of workload distributions gives a gain at the desired performance
level not only for Intel Xeon processors, but also for the first generation of Intel
Xeon Phi accelerators ([19]), significant performance losses are noticeable for
larger SMP/NUMA systems, such as SGI UV 2000 server used in this work.

In this paper, to overcome this shortcoming and to improve the efficiency
of the MPDATA application, we propose an islands-of-cores approach dedicated
to heterogeneous stencils such as those of MPDATA. This approach reveals a
correlation between computation and communication for heterogeneous stencil
computations, and enables a better management of the balance between compu-
tation and communication costs in accordance with the features of SMP/NUMA
systems such as the SGI UV 2000 server. The proposed approach is based on
the analysis of two scenarios for the parallel execution of a set of heteroge-
neous stencils. While the first scenario performs less computations but requires
more data transfers, the second one allows us to replace the implicit data traffic
between nodes by extra computations, and overcome the non-uniform mem-
ory constraints. In consequence, when using the maximum number P = 14 of
processors with 112 cores totally, the proposed approach accelerates the pure
(3+1)D decomposition more then 10 times, achieving approximately 30% of the
theoretical peak performance of the system.

To our best knowledge, there exists no investigations of the correlation
between computation and communication for heterogeneous stencils compu-
tations which consist of a set of stencils with different patterns. The closest
approaches were proposed in papers [6,26]. Similarly to our study, these works
consider the code transformation using the overlapped tiling technique. It enables
removing the synchronization and enhancing the data locality at the cost of
redundant computations. However, these works take into account only the homo-
geneous stencil computations, with a single pattern only. Opposite to our study,
these approaches are addressed to small computing platforms with one or two
processors.

2 SMP/NUMA Architecture: SGI UV 2000 Server

The parallel computer architecture that we are interested in this paper has all
its processing elements interconnected to a shared main memory. One of the
most prominent manufacturers of shared-memory systems is SGI. The latest
SGI UV (“UltraViolet”) product line is delivered since 2009. In all the experi-
ments described in this paper we employ a machine of the second UltraViolet
generation known as UV 2 [12], launched in 2012. For a single system, its cache-
coherent shared memory can be extended up to 64 TB, and accessed from up to
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2048 Intel CPU cores, thanks to the high-speed NUMAlink 6 proprietary inter-
connect with a point-to-point bandwidth of 6.7 GB/s per direction; doubled with
respect to NumaLink 5. This allows putting hundreds of NUMA nodes together
to behave as a single multicore system.

The target SGI UV 2000 server was acquired by the IT4Innovations National
Supercomputing Center in Ostrava [8] to support applications with extraor-
dinary large memory requirements. It consists of one “individual rack unit”
(IRU) that features 3328 GB of RAM and 112 cores in total, distributed across
14 NUMA nodes in 7 compute/memory modules called blades, connected to
each other via a backplane (one blade position in this IRU enclosure is empty).
Each NUMA node is based on the 8-core Intel Xeon E5-4627v2 3.3 GHz proces-
sor with roughly 236 GB RAM. IRU has ports that are brought out to external
NUMAlink 6 connectors. This UV 2000 server shares some infrastructure with
the Salomon supercomputer of the IT4Innovations center, in June 2015 placed
#40 on the TOP500 list (http://top500.org).

3 Parallelization of MPDATA for Shared-Memory Model

3.1 Introduction to MPDATA Application

The MPDATA application implements a general approach for integrating the
conservation laws of geophysical fluids on micro-to-planetary scales [10,13].
The MPDATA algorithm enables solving advection problems, and offers sev-
eral options to model a wide range of complex geophysical flows. The MPDATA
computations correspond to the group of iterative, forward-in-time algorithms.
This application is used typically for long running simulations, such as the
numerical weather prediction, that require execution of several thousand time
steps for a given size of domain. Moreover, since the accuracy of computation
plays a key role for MPDATA, these simulations usually are performed using
the double-precision floating-point format. The application allows solving 1-, 2-
or 3-dimensional problems. In this paper, we consider the last case, when the
MPDATA algorithm is defined on 3D grids with i, j, and k dimensions.

Every MPDATA time step performs the same computations, which consist
of the set of 17 stages [19,20]. The MPDATA stages represent the heterogeneous
stencils codes which update grid elements according to different patterns. All
the stages are dependent on each other: outcomes of prior stages are usually
input data for the subsequent computations. A single MPDATA time step loads
five 3D input arrays from the main memory, and saves one output 3D array
that is necessary for the next steps. In the original version of code, a lot of
intermediate results (3D arrays) are also transferred to/from the main memory.
In consequence, a significant data traffic to the main memory is generated, which
mostly limits the attainable performance on novel architectures.

3.2 (3+1)D Decomposition

In our previous works [18–20], we proposed a new strategy of workload dis-
tribution for the MPDATA application. This strategy contributes to ease the

http://top500.org
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memory and communication bounds, and to better exploit computation
resources of shared-memory systems including CPUs and the first generation of
Intel Xeon Phi accelerators. The main challenge of these works was to minimize
data transfers between the main memory and the cache hierarchy. To improve
the overall performance, we reorganized computation inside each time step of
MPDATA.

The main aim of the new computational flow for the MPDATA application
is to eliminate accesses to the main memory associated with all the intermediate
computations. This idea implies that all the intermediate outcomes of compu-
tations have to be kept in cache only - without transferring them to the main
memory. As a result, for each MPDATA time step, the main memory traffic
will be generated only by transfers required by input/output data (arrays). To
reach this goal, we proposed the (3+1)D decomposition of MPDATA compu-
tation [19,20] that is based on a combination of loop fusion and loop tiling
optimization techniques.

The implementation of the (3+1)D decomposition requires to partition the
MPDATA domain (grid) onto a set of sub-domains of size that enables to
kept all the necessary intermediate data in the cache memory. The consecu-
tive sub-domains are processed sequentially, one by one, while every sub-domain
is processed in parallel by available computing resources. Every sub-domain is
responsible for computing all the MPDATA stages that perform computations
on chunks (or blocks) of the corresponding arrays, and returns an adequate part
of the output array.

The proposed (3+1)D decomposition allows us to significantly reduce the
main memory traffic, where the real profit depends on the size of domains, as
well as computational characteristic of a given computing platform. For exam-
ple, using a single Intel Xeon CPU E5-2660v2 processor, the volume of the main
memory traffic is reduced from 133 GB to 30 GB, and computations are acceler-
ated about 2.8 times for domains of the size 256 × 256 × 64, and 50 time steps.
In this research, the likwid-perfctr tool [21] is used for the performance analy-
sis of developed codes. However, although the proposed (3+1)D decomposition
gives a gain at the desired performance level not only for Intel Xeon processors,
but also for the first generation of Intel Xeon Phi accelerators (see [19]), signif-
icant performance losses are noticeable for large shared-memory architectures,
such as SMP/NUMA systems.

Table 1 presents the comparison of execution times of MPDATA obtained
for the SGI UV 2000 server introduced in Sect. 2, for different versions of code.
The performance results are generated for the various number of processors,
benchmarking both versions: original and after (3+1)D decomposition. It should
be noted that in order to get the optimal performance for this server, it is
necessary for each thread of execution to allocate memory closest to a core on
which it is executed. This is achieved by initializing memory using the technique
known [22] as the first-touch policy with parallel initialization.

The obtained performance results reveals the performance limitations for
the proposed (3+1)D decomposition. Particularly, the performance gain at the
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Table 1. Execution times of 50 MPDATA time steps and grid of size 1024 × 512 × 64
obtained for the original parallel version of code and after the (3+1)D decomposition,
using the SGI UV 2000 server

#CPUs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Original 30.4 44.5 58.2 61.5 64.3 70.1 71.6 73.7 75.4 77.6 78.4 78.2 80.6 82.2

Originala 30.4 15.4 10.5 7.9 6.6 5.6 5.0 4.3 4.0 3.6 3.3 3.1 3.0 2.8

(3+1)Da 9.0 8.2 7.4 8.0 7.1 7.2 7.3 7.7 9.1 9.5 10.2 10.1 10.3 10.4
aThe first-touch policy with parallel initialization is used

desired level is achieved only for a single processor (3.37× faster than the original
version), while significant performance losses take place for the MPDATA execu-
tions with a higher number of processors. It should be also underlined here that
the original version returns even better execution times than the (3+1)D decom-
position, for all the benchmarks with the number of processors greater than 4. To
overcome this shortcoming and to improve the efficiency of the MPDATA appli-
cation, we propose the islands-of-cores approach, dedicated to heterogeneous
stencils such as those of MPDATA.

4 Islands-of-Cores Approach for MPDATA

4.1 Trade-off Between Computation and Communication
for Heterogeneous Stencils

To eliminate the revealed performance losses, the analysis of computational flow
for heterogeneous stencils has to be considered. Figure 1(a) presents an example
of forward-in-time computations with a set of heterogeneous stencils, when every
time step consists of three stages. Here each stage corresponds to execution of
an 1D stencil. Figure 1(b) and (c) show two scenarios for parallelization of this
example using two processors.

The first scenario (Fig. 1b) reveals an implicit data traffic between processors
in a shared-memory system because of data dependencies. This data traffic takes
place on borders of sub-domains distributed between processors. For example,
the output element C[d] computed by CPU B within the 3rd stage depends on
the element B[c] that is computed by CPU A as a result of stage 2. However,
B[c] depends on the element A[d] which is returned by CPU B in the 1st stage.
In consequence, the implicit transfers of two elements take place between the
processors CPU A and CPU B of a shared-memory system. Furthermore, three
synchronization points have to be added in order to ensure the correctness of
parallel computations.

The second scenario (Fig. 1c) demonstrates how to avoid exchanging data
between processors at the cost of extra computations. To compute the output
element C[d], the processor CPU B has to provide the element B[c] computed in
the 2nd stage by CPU A in the first scenario. Instead of transferring this element,
let CPU B compute the required element B[c] once more. However, this element
depends on the element A[c] from the Stage 1, which is returned by CPU A in the
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Fig. 1. Idea of Islands-of-cores approach: (a) computations corresponding to three
exemplary heterogeneous stencils; (b) parallelization with transfers of data between
CPUs; (c) parallelization without transfers of data and synchronization points between
CPUs, at the cost of extra computations

first scenario. Again, let both processors compute the element A[c] twice, rather
than transferring it from CPU A to CPU B. In consequence, CPU B computes
two elements more, independently of CPU A. This strategy can be also applied
for CPU B that requires the element A[d] computed by CPU A in the first
scenario. As a result, something like independent islands, both processors are
enabled to perform computations independently of each other within every time
step, at the total cost of computing three extra elements.

As shown in Fig. 1, both scenarios enable performing parallel computations.
The first scenario performs less computations but requires more data traffic,
while the second one allows us to replace the implicit data traffic between proces-
sors by replicating some computations. In fact, both solutions should be consid-
ered, but the key point is how they fit to the architecture of a computing system.
It is expected that the second scenario will be able to get a higher performance
in the case of powerful computing resources with relatively less efficient inter-
connects. On the contrary, the first scenario is more suitable for systems with
more efficient networks that connect less powerful computing resources.

Taking into account the architecture of the SGI UV 2000 server, the second
scenario seems to fit perfectly to processors connected each other by NUMAlink.
At the same time, the first scenario should be well suited inside each processor,
where a more efficient, internal memory hierarchy is used to implement the data
traffic between available cores.

4.2 Implementation: From Islands-of-Cores to Work-Teams

The (3+1)D decomposition moves the data traffic from the main memory to the
cache hierarchy. In consequence, a lot of intra- and inter-cache communications
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between cores/processors is generated. This approach corresponds to the first
scenario (Fig. 1b). When using a single processor, this traffic is restricted to
the cache hierarchy of this CPU. However, in the case of the whole server, the
required data are implicitly transferred between caches of neighbor processors
through the NUMAlink interconnect [12]. As Table 1 shows, it is particularly
significant when more than two processors cooperate to execute the application.

To face this issue, we propose to adopt the islands-of-cores approach to the
MPDATA application, which has a significantly more complex computing struc-
ture than the example shown in Fig. 1. In this work, we focus on the MPDATA
algorithm defined on a 3D grid, where every time step consists of 17 stages with
heterogeneous stencils that depend on each other in all three dimensions.

Based on the conclusion formulated in the end of the previous subsection, the
abstraction of islands-of-cores is applied across P processors of an SMP/NUMA
platform. In consequence, the MPDATA domain is partitioned into P parts
that are mapped onto P islands. Following the islands-of-cores approach, each
processor is now an island of cores, and these islands perform the following
phases:

1. All islands share all input data for each MPDATA time step, utilizing the
first-touch policy with parallel initialization.

2. Every island processes the part of MPDATA assigned to it according to the
(3+1)D decomposition.

3. Each island performs independent computations within every time step, at
the cost of extra computations (see Fig. 1).

4. All islands return common outcomes to the main memory, after each time
step.

5. All islands synchronize their works after each time step, in order to ensure
correctness of input data for subsequent time steps.

Since every island consists of the same number of cores, the MPDATA domain
is decomposed into equals parts, where the number of parts is equal to the
number of processors used in computations. Each part is further partitioned into
the set of sub-domains according to the proposed (3+1)D decomposition. While
different sub-domains are executed sequentially, each of sub-domain is processed
in parallel by utilizing a work team of cores which belong to every island. Each
work team of cores performs computations corresponding to all the 17 stages
of MPDATA, including computing extra elements instead of transferring them
from other teams. As a result, every work team is able to perform computations
for each MPDATA time step independently of other teams.

To adapt the proposed islands-of-cores approach to the MPDATA applica-
tion, an efficient method of mapping parts of MPDATA onto processors has to
be developed. It is expected to obtain too large communication overheads when
the MPDATA domain is partitioned in all three dimensions. The reason is that
data layouts of all the MPDATA arrays allow performing required transfers of
the continuous areas of memory only in the first and second dimensions. As a
result, only 1D and 2D variants of partitioning the MPDATA domain should be
taken into account. When evaluating the proposed approach, the 1D partitioning
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is considered as a starting point in this paper, while investigating more complex
2D variants will be among the main goals of our future works.

As data transfers take place only between neighbour parts of the MPDATA
domain, to reduce the communication paths through the network topology, all
the neighbour parts should be assigned to the adjacent processors that are closely
connected each other within the interconnect. It can be achieved by controlling
the OpenMP Thread Affinity interface that allows us to bind threads to physical
processing units.

The total amount of extra elements which have to be computed redundantly
depends on the problem size, number of islands, and shape of partitioning, as
well as data dependencies between all the MPDATA stages. Table 2 presents an
example how the total number of extra elements increases with the number of
work teams, in comparison with the original version. We compare results for two
variants of mapping the MPDATA domain onto 1D grids of processors - across
either the first (A) or second (B) dimension of the MPDATA grid. It can be
concluded that the first variant gives fewer extra elements, for any number of
islands.

Table 2. The total amount of extra elements in percentage in comparison with the
original version, obtained for mapping the MPDATA grid onto 1D grids of processors
using variants A and B, for different number of islands and the domain of size 1024 ×
512 × 64

# of islands 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Variant A [%] 0.00 0.25 0.49 0.74 0.99 1.24 1.48 1.73 1.98 2.22 2.47 2.72 2.96 3.21

Variant B [%] 0.00 0.49 0.99 1.48 1.98 2.47 2.96 3.46 3.95 4.45 4.94 5.43 5.93 6.42

5 Performance Results

This section outlines the performance results obtained for the new implementa-
tion of MPDATA developed using the approach described in the previous sec-
tions. The new strategies proposed for the workload distribution and data par-
allelism require also to develop a proprietary scheduler with the affinity-aware
placement of threads/cores. To achieve this goal, the OpenMP application pro-
gramming interface is used only for creating threads and controlling their affinity
policy, while all parallel computations are managed by our scheduler which sup-
ports the proposed approach.

All the benchmarks are compiled using the Intel compiler icpc v.17.0.1 with
the compilation flags: -O3 -xavx -fp-model precise -fp-model source, and
executed using the SGI UV 2000 server equipped with 14 CPUs. All performance
results are obtained for the double-precision floating-point format, the grid of
size 1024× 512× 64, and 50 times steps. Such a relatively small number of time
steps is sufficient to provide the performance evaluation because of homogeneity
of all time steps.
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In this work, we test the 1D mapping of parts of the MPDATA domain onto a
grid of processors. Two variants of experiments are performed, which correspond
to distributing the MPDATA domain across either its first or second dimension.
Only the results for the first variant are presented in the rest of the paper as it
gives better results for all the benchmarks. This is a consequence of a smaller
number of extra elements provided by this variant (Table 2).

Table 3 and Fig. 2 present the execution times achieved for the proposed
islands-of-cores approach in comparison with the original version and the pure
(3+1)D decomposition. Also, we show the partial Spr and overall Sov speedups
which define the performance gains of the proposed approach against the pure
(3+1)D decomposition and original version, respectively.

The main conclusion is that the proposed islands-of-cores approach, which
combines the (3+1)D decomposition and the second scenario of paralleliz-
ing stencil computations, allows us to improve radically the efficiency of the
MPDATA computations in comparison with the pure (3+1)D decomposition.
As expected, despite the extra computations (Table 2), MPDATA is now exe-
cuted faster for all values of P . What should be underlined here, the usage of
the islands-of-core approach together with the (3+1)D decomposition permits
preserving the high efficiency of such a decomposition.

Table 3. Execution times for the original version, pure (3+1)D decomposition, and
the proposed islands-of-cores approach, as well as partial Spr and overall Sov speedups
of the proposed approach

#CPUs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Execution times

Original 30.40 15.40 10.50 7.87 6.55 5.61 4.95 4.27 4.01 3.58 3.31 3.14 2.95 2.81

(3+1)D 9.00 8.20 7.38 7.98 7.06 7.22 7.26 7.69 9.11 9.48 10.20 10.10 10.30 10.40

Islands of cores 9.00 5.62 4.17 2.93 2.34 1.97 1.72 1.49 1.36 1.25 1.12 1.06 1.05 1.01

Speedups

Spr 1.00 1.46 1.77 2.72 3.02 3.66 4.22 5.16 6.70 7.58 9.11 9.53 9.81 10.30

Sov 3.38 2.74 2.52 2.69 2.80 2.85 2.88 2.87 2.95 2.86 2.96 2.96 2.81 2.78
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Fig. 2. Performance results for the different number P of processors: (a) comparison
of the execution time for the different versions of MPDATA; (b) partial and overall
speedups of the islands-of-cores approach
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In fact, only for configurations with one 8-core processor and two processors
(16 cores totally), the pure (3+1)D decomposition is able to shorten radically
the execution time in comparison with the original version, while already for
P = 4 this decomposition gives a worse performance. For larger values of P ,
it is the original version that overpowers the pure (3+1)D decomposition. The
disadvantage of utilizing only the (3+1)D decomposition increases with the grow-
ing number of processors, achieving the ratio of about 3.7 for P = 14 (112 cores
totally). The reason for such a disappointing behavior of the pure (3+1)D decom-
position is large overheads of data transfers between NUMA nodes (processors)
when data should be extracted from the deep memory hierarchy of each node
before performing transfers, while in the original version these data are simply
located in the main memory.

On the contrary, the acceleration of the proposed island-of-core approach
against the original version is kept on a similar level, independently of the num-
ber of processors, with Sov = 2.74 and Sov = 2.78 for P = 2 and P = 14,
respectively. As shown in Fig. 2, the performance gain of the combined approach
against the pure (3+1)D decomposition increases with the growing number of
processors that together perform computations. Finally, when using the max-
imum number P = 14 of processors, the proposed approach accelerates the
(3+1)D decomposition more then 10 times.

Table 4 presents the sustained performance (in Gflop/s) for the islands-of-
cores approach, as well as the utilization rate in comparison with the theoretical
peak performance of the server. As shown in this table, approximately 30% of
the theoretical peak is achieved when using less than 12 processors, while it
decreases up to the level of 26% for larger values of P . In this benchmark, the
maximum sustained performance of about 390 Gflop/s is obtained for P = 14,
which corresponds to about 77% of the linear scaling. For smaller values of P ,
the parallel efficiency decreases from 96.6% for P = 4 to 80.7% for P = 12.

Table 4. Sustained performance [Gflop/s] obtained for the islands-of-cores approach
when using the SGI UV 2000 server, as well as utilization rate [%], and parallel efficiency
expressed as percentage of linear scaling

Number of processors

1 2 3 4 5 6 7 8 9 10 11 12 14

Theoretical performance

105.6 211.2 316.8 422.4 528.0 633.6 739.2 844.8 950.4 1056.0 1161.6 1267.2 1478.4

Sustained performance

42.7 68.5 92.5 131.9 165.5 197.0 226.1 261.4 287.0 325.9 349.8 370.3 390.1

Utilization rate [%]

40.4 32.4 29.2 31.2 31.3 31.1 30.5 30.9 30.2 30.8 30.1 29.2 26.3

Parallel efficiency: % of linear scaling

100.0 98.7 96.5 96.6 92.8 90.3 87.7 89.0 84.2 84.9 83.5 80.7 77.3
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6 Conclusions and Future Work

Accelerating memory access by arranging data and computations in an appropri-
ate way is vital for achieving the high application performance on modern com-
puting architectures. Applications with a poor data locality reduce the effective-
ness of the memory hierarchy, causing long stall times waiting for data accesses. A
purposeful management of data locality plays the primary role for enabling appli-
cations to run on different architectures efficiently. The above statement refers
in particular to SMP/NUMA systems, which are characterized by heterogeneous
network structures. In consequence, since data can be physically dispersed over
many nodes, the access to various data items may require significantly different
times. This favours accesses to the local memory as fastest.

The present paper faces this challenge for heterogeneous stencil computa-
tions, where MPDATA is an important example of such scientific codes. For
this purpose, the new islands-of-cores approach is proposed aiming at increasing
the efficiency of stencil computations on SMP/NUMA platforms, by improv-
ing the data locality. This approach exposes a correlation between computation
and communication for heterogeneous stencils, enabling a better management
of the trade-off between computation and communication costs in accordance
with the features of SMP/NUMA systems, such as the SGI UV 2000 server used
in this work. To overcome the non-uniform memory access constraints, the pro-
posed approach combines the previously developed (3+1)D decomposition and
the scenario of parallelizing stencil computations when the implicit data traf-
fic between nodes is replaced by extra computations. As a result, the resulting
parallel code scales well with increasing the number of processors, and radically
better than both the original version and pure (3+1)D decomposition.

In particular, for the MPDATA grid of size 1024 × 512 × 64, approximately
30% of the theoretical peak is achieved when using less than 12 processors,
while it decreases up to the level of 26% for large configurations. In this bench-
mark, the maximum sustained performance of about 390 Gflop/s is obtained for
the maximum configuration with 112 cores of 14 Intel Xeon E5-4627v2 3.3 GHz
processors. It corresponds to about 77% of the linear scaling. For smaller values
of P , the parallel efficiency decreases from 96.6% for P = 4 to 80.7% for P = 12.

The achieved results justify further research on improving the efficiency of
heterogeneous stencil computations on modern architectures. In particular, the
proposed islands-of-cores approach can be applied to optimize computations
within every multicore CPU (or manycore accelerator). At the opposite edge
of the scale, we plan to study the usage of MPI for extending the scalability
of our approach for much large system configurations. This requires to build
performance models and methods for modeling and management of the correla-
tion between computation and communication costs, to study its impact on the
sustained performance. The optimal trade-off between computations and com-
munications inside and between processors should be determined on this basis.
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