
Parallelization and Auto-scheduling
of Data Access Queries in ML Workloads

Pawel Bratek1(B), Lukasz Szustak1, and Jaroslaw Zola2

1 Czestochowa University of Technology, Dabrowskiego 69,
42-201 Czestochowa, Poland

{pawel.bratek,lukasz.szustak}@pcz.pl
2 University at Buffalo, Buffalo, NY 14260, USA

jzola@buffalo.edu

Abstract. We propose an auto-scheduling mechanism to execute count-
ing queries in machine learning applications. Our approach improves the
runtime efficiency of query streams by selecting, in the on-line manner,
the optimal execution strategy for each query. We also discuss how to
scale up counting queries in multi-threaded applications.

Keywords: Data access queries · Auto-scheduling · Machine
learning · SABNAtk

1 Introduction and Problem Formulation

Counting data records with instances that support some specific configuration
of the selected variables is one of the basic operations used by machine learning
algorithms. The problem manifests itself each time a probability distribution
has to be estimated, and spans applications ranging from Bayesian networks
learning through association rule mining and classification [2,4] all the way to
deep learning [6] and information retrieval [5].

Counting is typically viewed as a black-box procedure, and implemented
using simple and not necessarily efficient strategies, e.g., contingency tables. At
the same time, in many applications it accounts for over 90% of the total exe-
cution time [1]. Consequently, improving performance of counting can directly
translate into better performance of these applications. The current specialized
approaches based on data indexing, such as ADtrees [3], have limited applicabil-
ity due to the significant preprocessing and memory overheads. Recently, Karan
et al. [1] proposed SABNAtk, a new strategy in which counting queries and their
context of execution are abstracted such that the counts can be aggregated as a
stream, irrespective of the user-defined downstream processing.

Consider a set of n categorical random variables X = {X1, X2, . . . , Xn},
where the domain of variable Xi is represented by ri states [xi1, . . . , xiri

].
Let D = [D1, D2, ..., Dn] be a complete database of instances of X , where
Di, |Di| = m, records observed states of Xi. Given the set of input variables

c� Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 525–529, 2022.
https://doi.org/10.1007/978-3-031-06156-1_43

526 P. Bratek et al.

{Xi, Xj , . . .} ⊆ X represented by database D, the counting query Count((Xi =
xi) ∧ (Xj = xj) ∧ . . .) returns the size of the support in D for the specific
assignment [xi, xj , . . .] of variables {Xi, Xj , . . .}. For example, the result of exe-
cuting query Count((X1 = 3) ∧ (X2 = 1) ∧ (X3 = 2)) over database D shown
in Fig. 1 is 2, because there are two instances matching the query condition.
Simple counting query generalizes to a set of queries over the same set of vari-
ables COUNT(Xi, Xj , . . .), in which we want to retrieve all non-zero answers
to queries Count((Xi = xi) ∧ (Xj = xj) ∧ . . .) for all possible assignments of
query variables. We will say that individual queries within COUNT query share
context. For example, the answer to query COUNT(X1, X3) would return the
following list of counts: [((1, 2), 2), ((2, 1), 2), ((3, 2), 3)], where each entry is in
the form ((xi, xj),Count((X1 = xi) ∧ (X3 = xj))).

The starting point for our work are counting strategies proposed in [1], and
implemented in the open-source C++17 library SABNAtk. In SABNAtk, the
counting queries COUNT can be answered using one of three strategies: 1) sim-
ple contingency table (CT), in which contingency table over all possible states
of query variables is constructed, 2) bitmap counter (BC) in which input data is
represented via bitmaps and counting is reduced to bitmap intersecting and bit
counting, and 3) radix counter (RC) in which counting is based on columnar data
partitioning similar to radix sorting. Which of the strategies is the best depends
on many factors (e.g., query variables, data complexity, etc.) and hence it is
not possible to state a-priori that one strategy dominates the others (see Fig. 2).
In this work, we focus on scaling up SABNAtk in multi-threaded applications.
Specifically, we seek to introduce a new auto-scheduling mechanism that learns
online strategy to select optimal query processing counter.

Fig. 1. Toy example of
database D with three
variables.

Fig. 2. Execution time of counting queries by differ-
ent query strategies depending on the number of query
variables (shorter is better). Each point represents an
average time of ten randomly generated queries

Parallelization and Auto-scheduling of Data Access Queries 527

2 Proposed Approach and Preliminary Results

To enable multi-threaded execution, we focus on two main questions: 1) how to
efficiently execute any individual query, and 2) how to deal with a batch of queries
generated concurrently by multiple threads? The strategies implemented within
SABNAtk are stateless. Consequently, the simplest approach is to execute a query
within the thread that issued it. However, in the real-world applications, it is
common that consecutive queries share some of the query variables (i.e., context).
Hence we propose to introduce a queuing and query rewriting mechanism to
mitigate redundant data accesses.

To address the first question, we first experimentally assess and then theoreti-
cally characterize performance of each of SABNAtk’s counting strategies. Figure 2
shows one representative example of execution profile. From the figure, it follows
that the choice of the optimal strategy is non-trivial. At the same time, choosing
the right counter offers significant reduction in the query execution time.

Our key idea is to pose the problem of selecting the optimal query execution
strategy as an online regression problem. To this end, we first analytically derive
the asymptotic average complexity of each counter as a function of the query size
and the query complexity. The regression function is fit on-the-fly concurrently
with serving the queries. Initially, the choice of strategy is random to mitigate
overfitting, and as the execution proceeds, it becomes guided by our trained
regression function.

Consider a single query COUNT(X1, X2, . . . , XN) of size N . Additionally,
let q =

�N
i=1 ri be the product of arity of query variables. The cost of the CT

strategy is given by N · m + q in both worst and average case. The average
complexity of BC depends directly on the input data and hence is difficult to
characterize exactly. Therefore, we make a simplifying assumption that each
variable Xi ∈ X is derived from a multinomial distribution with K equiprobable
states [xi1, ..., xiK

]. Then from the Bernoulli scheme and the properties of expec-
tation we can derive the cost as m × �N

L=0 KL · (1 − (1 − 1
KL)m). Finally, the

cost of RC is asymptotically linear and amounts to N · m. The derived average
complexities allow us to define the following functions as query execution cost
predictors:

CT (N, K, m, β) = β1 · N · m + β2 · Kβ3·N + β4

BC(N, K, m, β) =

⎧
⎨
⎩

β1 · m · (Kβ2·N+1 − 1)
(K − 1)

N ≤ N0

BC(N0, K, m, β1, β2) + β3 · (N − N0) · m + β4 N > N0,

RC(N, m, β) = β1 · N · m + β2,

where N0 is a number satisfying the condition: KN0 < m ∧ KN0+1 > m. The
parameter K follows from the assumption about input data, and in practice,
can be replaced by the arithmetic mean of the arity of variables included in the
query (or any other meaningful statistics, e.g., median, etc.).

We use defined functions to build online regression model Y = f(X,β)+� for
each counter. Our approach assumes a stream of incoming queries that initially

528 P. Bratek et al.

are performed by randomly selected counters. We count cycles needed for their
executions using Performance Application Programming Interface (PAPI) and
apply them to the regression model as observations of the dependent variable
Y . For a given query, we choose a counter with the smallest estimated cost of
execution. We update the values of vector β after each query realization what
results in better knowledge about the efficiency of counters depending on the
query complexity.

In Table 1 we outline our preliminary results. Here the improvement factor
shows how the auto-scheduling mechanism improves the overall performance. To
obtain the baseline, we executed 1000 randomly generated queries for each of
the presented configurations, and collected the total realization time of these
queries using a randomly selected counter for each of them. Then we processed
exactly the same query stream using our proposed auto-scheduling mechanism.
The improvement factor is the ratio of the two runtimes. As shown in Table 1,
our strategy offers improvement from 10.74× to 778.21× depending on the input
data. These are very significant improvements considering that in real-world
scenarios average ML application has to handle billions of queries.

Table 1. Improvement factor with respect to random strategy

Dataset n Improvement factor

m = 1K m = 10K m = 100K

Child 20 778.21 87.95 22.62

Insurance 27 533.30 63.15 16.64

Mildew 35 282.58 19.17 26.69

Alarm 37 311.74 18.24 10.74

Barley 48 145.81 15.22 17.04

Currently, we work on query queuing and rewriting mechanism for multi-
threaded environments. The problem is challenging as it requires careful choice
of on-line strategies to decide when sufficient number of queries are queued to
improve average query processing speed while maintaining acceptable latency.

Acknowledgments. This research was supported by the National Science Centre
(Poland) under grant no. UMO-2017/26/D/ST6/00687.

References

1. Karan, S., Eichhorn, M., Hurlburt, B., Iraci, G., Zola, J.: Fast counting in machine
learning applications. In: Uncertainty in Artificial Intelligence (2018)

2. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid.
In: International Conference on Knowledge Discovery and Data Mining, pp. 202–207
(1996)

Parallelization and Auto-scheduling of Data Access Queries 529

3. Moore, A., Lee, M.: Cached sufficient statistics for efficient machine learning with
large datasets. J. Artif. Intell. Res. 8, 67–91 (1998)

4. Quinlan, J.: Bagging, boosting, and c4.5. In: AAAI Innovative Applications of Arti-
ficial Intelligence Conferences, pp. 725–730 (1996)

5. Ramos, J.: Using TF-IDF to determine word relevance in document queries. In:
Instructional Conference on Machine Learning, pp. 133–142 (2003)

6. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: International Confer-
ence on Artificial Intelligence and Statistics, pp. 448–455 (2009)

