
Parallel Auto-Scheduling of Counting
Queries in Machine Learning Applications

on HPC Systems

Pawel Bratek1(B) , Lukasz Szustak1 , and Jaroslaw Zola2

1 Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa,
Poland

pawel.bratek@pcz.pl, lszustak@icis.pcz.pl
2 University at Buffalo, Buffalo, NY 14260, USA

jzola@buffalo.edu

Abstract. We introduce a parallel mechanism for auto-scheduling data
access queries in machine learning applications. Our solution combines
the advantages of three individual strategies to reduce the time of query
stream execution. Using bayesian network learning as a use case, we
achieve several times speedup compared to the best possible strategy on
two different computing servers.

1 Introduction and Problem Formulation

Counting queries are the most basic operation utilized by machine learning
(ML) algorithms. Their task is to count data records with instances support-
ing specific configurations of the selected variables. This problem arises every
time a probability distribution has to be estimated and hence applies to many
applications, like evaluating a scoring function while training Bayesian network

Fig. 1. Example of
database with three
variables

structure [5] or assessing support and confidence in associ-
ation rule mining problems [1]. Other relevant application
areas could be classification [6], deep learning [8] or infor-
mation retrieval [7].

Consider a set of n categorical random variables
X = {X1, X2, . . . , Xn}, where each variable Xi may be
represented by different number of ri states [xi1, . . . , xiri

].
Let D = [D1, D2, . . . , Dm] be a complete database contain-
ing m instances (observations) of X , where each row Di,
records observed states of all n variables in X . Given D,
and a set of input query variables {Xi, Xj , . . .} ⊆ X , the
counting query Count((Xi = xi) ∧ (Xj = xj) ∧ . . .)
returns the number of instances of D that support the
specific configuration [xi, xj , . . .] of variables [Xi, Xj , . . .].
For instance, given the database D shown in Fig. 1, the
answer to query Count((X1 = 2) ∧ (X2 = 0) ∧ (X3 = 1))

c� The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. Zeinalipour et al. (Eds.): Euro-Par 2023 Workshops, LNCS 14352, pp. 327–333, 2024.
https://doi.org/10.1007/978-3-031-48803-0_12

328 P. Bratek et al.

is 3, as there are 3 records matching the query condition. In many practical
scenarios, simple counting queries Count are issued in batches of consecutive
queries over the same set of variables. We can perceive such a batch of queries
with shared context as one query COUNT(Xi, Xj , . . .) in which the task is to
retrieve all non-zero responses to queries Count for all possible configurations
of query variables. For example, the result of executing query COUNT(X2, X3)
is the following list of counts: [((0, 1), 4), ((1, 0), 2), ((2, 1), 1)], where each ele-
ment is in the form ((xi, xj),Count((X2 = xi) ∧ (X3 = xj))). Finally, let
Pa(Xi) (called parent set) be a subset of X − {Xi} and consider query of
type COUNT(Xi |Pa(Xi)), which details responses for query COUNT(Pa(Xi))
depending on possible states of given variable Xi. Figure 2 shows the answers
to an example query COUNT(X1 |{X2, X3}) in a contingency table containing
only non-zero responses.

Fig. 2. Contingency table for query
COUNT(X1 |{X2, X3})

The importance of counting queries
comes from the fact that in many appli-
cations, they account for more than
90% of the total execution time [4].
Therefore, improving the performance
of counting can significantly boost
the performance of multiple applica-
tions. At the same time, counting is
usually treated as a black-box pro-
cedure and neglected by implement-
ing it using simple but not necessar-
ily efficient strategies, e.g. contingency

tables. While this approach may benefit from fast memory access, it often
becomes impractical due to its sparse nature and prohibitive memory complexity.
An alternative approach is to use a dictionary (e.g. hash table) that addresses
the problem of sparsity and memory (it stores only assignments observed in D)
but imposes non-trivial overheads of hashing and traversing scattered memory.
More advanced techniques like ADTrees, which rely on data indexing, have lim-
ited applicability due to extensive preprocessing time and memory requirements.

A novel approach to the problem of counting, called SABNAtk, was pro-
posed in the work [4]. SABNAtk is a framework which abstracts counting queries
and their context such that the counts can be aggregated as a stream irrespec-
tive of the user-defined downstream processing. In addition to a simple contin-
gency table strategy (ct), it implements two memory-efficient data traversing
algorithms that outperform commonly used ADtrees and hash tables. First is
the Bitmap strategy (bv), in which the idea is to represent query variables as
bitmaps and reduce the counting process to performing logical AND operations
on bitmaps and counting of resulting bits. The second is the Radix strategy (rad),
which derives from the classic Radix sort algorithm and involves columnar data
partitioning. Figure 3 shows two representative examples illustrating the perfor-
mance of individual strategies depending on query size. From these plots, we
can see that no single approach dominates the others, and for a given input

Parallel Auto-Scheduling of Counting Queries in ML Apls. on HPC Systems 329

data, the best method depends on query properties. At the same time, choosing
the proper strategy could significantly reduce the query execution time, as we
noticed for the first time in [3] and presented a preliminary idea of a mechanism
for selecting strategy at runtime. This work describes a developed and imple-
mented solution, including parallel support to enable deployment in large-scale
multi-threaded environments. We also demonstrate substantial results achieved
in real-world machine learning application on two different HPC architectures.

Fig. 3. The execution time of counting queries by different strategies depending on the
size of the parent set (shorter is better). Each point represents an average time of one
hundred randomly generated queries of a given size.

2 Proposed Approach

Our key idea is to develop a mechanism that selects the optimal strategy for each
individual query from the stream based on its execution cost predicted by regres-
sion models. Apart from experimentally assessing the performance of individual
strategies, we analyse their asymptotic average complexity. We consider a query
COUNT(Xi |Pa(Xi)) and assume that each variable of Pa(Xi) derives from a
multinomial distribution with K equiprobable states. This simplifying assump-
tion is necessary for the bv strategy as its complexity follows directly from the
properties of input data due to implementing the DFS algorithm. While the cost
of computing intersections in each DFS node is constant and equal to m, the
number of nodes is challenging to assess a-prior. Therefore, we analyse a sin-
gle tree node and determine the probability of not removing it during traversal.
Next, we use the Bernoulli scheme and properties of expectation to establish the
cost of bv as m × �N

L=0 KL · (1 − (1 − 1
KL)m). Based on this result and com-

plexity analysis of the two remaining strategies, we formulate functions (1) - (3)
that let us model query processing time. The independent variable x of these
functions is the size of the query, and the remaining parameters λ, β and γ are
regression coefficients, which we want to learn by executing queries. We omit

330 P. Bratek et al.

the parameter m, as in typical deployment, it is constant due to processing a
stream of queries for a given dataset. Furthermore, to enable the usage of linear
regression, we model the cost of bv and ct strategies using piecewise functions
dividing the domain at x0 = logκ(m). It is not necessary for the rad strategy,
which is asymptotically linear relative to the number of query variables.

Cct(x, α) =

�
α1 · x + α2 x ≤ x0

α3 · Kα4·x x > x0,
(1)

Cbv(x, β) =

�
β1 · Kβ2·x x ≤ x0

β3 · x + β4 x > x0,
(2)

Crad(x, γ) = γ1 · x + γ2, (3)

Since the performance of our methods depends on many factors (e.g. proper-
ties of input data, size of the query, computing platform), we train the models
online, i.e. along with processing the actual stream of queries. Initially, we select
strategies in a round-robin style. For each query, we measure the time of its
execution and apply it to update the corresponding regression coefficient. As
this is linear regression, we must calculate only mean, variance and covariance,
which have stable and extremely fast incremental algorithms, e.g. [10]. When a
given strategy handles some assumed number of queries, we remove it from the
round-robin queue. We notice that this moment may come at a different time for
each method. The reason is that depending on the input data, some approaches
may be unable to process all assigned queries due to exceeding available memory
(see ct in Fig. 3). In practice, we handle it by delegating problematic queries to
the best available method. When all models (1) - (3) are trained, we start using
them to estimate the performance of strategies. Specifically, for a given query,
we choose an approach with the lowest predicted execution cost.

Furthermore, to enable the deployment of the developed mechanism in real-
world large-scale scenarios, we implement it in a way that supports multi-
threaded execution. The fact that each strategy within SABNAtk is stateless
favours the execution of queries in the task-parallel model. However, the intro-
duced mechanism must store the state (e.g. model parameters), causing poten-
tial race condition issues. Therefore, we protect all problematic procedures with
mutexes, making the developed mechanism thread-safe.

Figure 4 shows two examples of applying the developed mechanism for han-
dling a stream of random queries. From these plots, we see that our cost models
quickly get an initial estimation of parameters, and as stream execution pro-
gresses, queries are handled by the strategies that offer the lowest cost of execu-
tion.

Parallel Auto-Scheduling of Counting Queries in ML Apls. on HPC Systems 331

Fig. 4. The regression models for: a) Hailfinder (n = 56, m = 1K) and b) Water
(n = 32, m = 100K) datasets after processing 10, 100 and 1000 queries. Each point
represents the time of one query execution. X-axis is the size of the query.

3 Experimental Validation

We assess how our auto-scheduling mechanism performs in the actual real-world
application related to Bayesian network structure learning. Specifically, we test
the performance of the parent set assignment solver [4] using popular machine
learning benchmark datasets [2] containing 100,000 instances. For given X and
D, queries of the form COUNT(Xi |Pa(Xi)) are performed for each Xi, where
Pa iterates over all possible subsets of X −{Xi}, starting from empty set. Conse-
quently, at level i = 0, . . . , n−1, we have that |Pa| = i, and there are total

�
n−1

i

�

queries to execute, creating an interesting pattern of queries that grow in size
as computations progress. Internally, the solver uses MDL [9] scoring function
and implements several optimizations to reduce the number of queries based on
the results from previous levels. It also leverages Intel TBB to execute multiple
queries in parallel.

Table 1 shows that the performance of individual strategies (bv, rad or ct)
depends not only on the given dataset but even on the computing platform.
For instance, while bv is the fastest strategy for the Insurance dataset running
on the AMD platform, it loses with rad on the Intel platform and the same
dataset. Our auto-scheduling mechanism (called auto) addresses all these issues,
becoming the best approach in all test cases. At the same time, it offers significant
improvement, even compared to the best possible strategy. Depending on the

332 P. Bratek et al.

dataset, speedup ranges from 5.84 to 11.26 on the AMD platform and 2.29 to
3.99 on the Intel.

Currently, we are working on adapting the counting process to modern HPC
systems. Our preliminary results show that using the full potential of state-of-
the-art ccNUMA architectures opens a way to enhance the speed of counting
queries for the most demanding databases containing millions of records.
At the same time, we consider the problem of counting from an algorithmic
perspective. In real-world applications, it is common that consecutive queries
share some of the query variables. Hence, we aim to develop a query queuing
and rewriting mechanism to mitigate redundant data accesses.

Table 1. The total execution time of the parent set assignment solver (in seconds)

Platform Dataset n bv rad ct auto

AMD EPYC 7763
2 × 64 cores
512 GB RAM

Child 20 167.13 135.97 65.44 11.20

Insurance 27 1210.42 1461.15 ∗ 107.46

Mildew 35 1788.61 382.83 ∗ 46.95

Barley 48 7302.15 1256.18 ∗ 202.47

Intel Xeon Gold 6240
2 × 18 cores
192 GB RAM

Child 20 838.00 290.42 166.36 74.32

Insurance 27 6197.68 3175.13 ∗ 796.70

Mildew 35 9275.16 860.44 ∗ 248.45

Barley 48 38489.10 3091.74 ∗ 973.32

∗ – strategy could not complete the test due to running out of system memory

Acknowledgements. This research was supported by the project financed under
the program of the Polish Minister of Science and Higher Education under the
name “Regional Initiative of Excellence” in the years 2019–2023 project number
020/RID/2018/19 the amount of financing PLN 12,000,000.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD International Conference on Manage-
ment of Data, vol. 22, issue 2, pp. 207–216 (1993)

2. Bayesian Network Repository. https://www.bnlearn.com/bnrepository
3. Bratek, P., Szustak, L., Zola, J.: Parallelization and auto-scheduling of data access

queries in ML Workloads. In: Euro-Par 2021: Parallel Processing Workshops, pp.
525–529 (2022)

4. Karan, S., et al.: Fast counting in machine learning applications. In: Uncertainty
in Artificial Intelligence (2018). arXiv: 1804.04640

5. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

6. Quinlan, J.R.: Bagging, Boosting, and C4.5. In: AAAI Innovative Applications of
Artificial Intelligence Conferences, pp. 725–730 (1996)

Parallel Auto-Scheduling of Counting Queries in ML Apls. on HPC Systems 333

7. Ramos, J.: Using TF-IDF to determine word relevance in document queries. In:
Instructional Conference on Machine Learning, pp. 133–142 (2003)

8. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: International Con-
ference on Artificial Intelligence and Statistics, pp. 448–455 (2009)

9. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)
10. West, D.H.D.: Updating mean and variance estimates: an improved method. Com-

mun. ACM 22, 532–535 (1979)

