
Efficient Allocation of Image Recognition
and LLM Tasks on Multi-GPU System

Marcin Lawenda1(B), Krzesimir Samborski1, Kyrylo Khloponin1,
and Łukasz Szustak2

1 Poznan Supercomputing and Networking Center,
Jana Pawła II 10, 61-139 Poznań, Poland

{lawenda,ksamborski,kkhloponin}@man.poznan.pl
2 Czestochowa University of Technology, Dąbrowskiego 69,

42-201 Częstochowa, Poland
lszustak@icis.pcz.pl

Abstract. This work is concerned with the evaluation of the perfor-
mance of parallelization of learning and tuning processes for image classi-
fication and large language models. For machine learning model in image
recognition, various parallelization methods are developed based on dif-
ferent hardware and software scenarios: simple data parallelism, dis-
tributed data parallelism, and distributed processing. A detailed descrip-
tion of presented strategies is given, highlighting the challenges and ben-
efits of their application. Furthermore, the impact of di%erent dataset
types on the tuning process of large language models is investigated.
Experiments show to what extent the task type a%ects the iteration time
in a multi-GPU environment, o%ering valuable insights into the optimal
data utilization strategies to improve model performance. Furthermore,
this study leverages the built-in parallelization mechanisms of PyTorch
that can facilitate these tasks. Furthermore, performance profiling is
incorporated into the study to thoroughly evaluate the impact of mem-
ory and communication operations during the training/tuning procedure.
Test scenarios are developed and tested with numerous benchmarks on
the NVIDIA H100 architecture showing efficiency through selected met-
rics.

Keywords: machine learning · Large Language Models · performance
assessment · profiling · NVIDIA H100

1 Introduction

The rise of Machine Learning (ML) along with Large Language Models (LLMs)
has revolutionized various domains such as natural language processing, com-
puter vision, and data analysis. Known for their extensive parametrization and
complex structures, these models require significant computational resources for
both training and inference. Multi-card GPU systems, which leverage the par-
allel processing capabilities of multiple graphics processing units (GPUs), have
c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Wyrzykowski et al. (Eds.): PPAM 2024, LNCS 15581, pp. 63–78, 2025.
https://doi.org/10.1007/978-3-031-85703-4_5



64 M. Lawenda et al.

become the essential infrastructure to meet these computational requirements
[1]. This approach has resulted in the development of code specifically designed
for parallelization, enabling faster training of much larger models by leverag-
ing the increased computational power and memory of additional accelerators.
However, efficient task allocation in multi-card GPU systems remains a signif-
icant challenge due to the inherent complexity of the model architecture, data
dependencies, and hardware heterogeneity [2].

The primary objective of this work is to analyse the distribution of data
chunks in single and multi-GPU environments to enhance the processing effi-
ciency of machine learning applications. Through experiments, different tech-
niques are evaluated for scalability and execution capabilities, leading to
improved planning and recommendations for future applications and enhance-
ments. The study involves GPU benchmarking with neural models and data
distribution strategies to optimize training processes. The aim is to assess the
scalability in a multi-GPU setup to understand the performance of hardware-
software configurations in large-scale computing. Selecting the most suitable
approach for a specific application’s workflow is a key challenge, especially when
utilizing multiple GPU cards across nodes. The findings from these tests will
offer valuable insights for refining models and tools in the future.

2 Experimental Environment and Methodology

2.1 Hardware Infrastructure

The hardware platform utilized for this research is built on the HPE Cray XD665
system, which comprises of 2 AMD EPYC 9334 CPUs and 4 NVIDIA H100-94
SXM5 GPUs. There are a total of 64 CPU cores, based on Zen 3 architecture and
2.7GHz clock speed. The system’s RAM capacity per node amounts to 768 GB,
complemented by NVIDIA H100-94 SXM5 GPUs, each equipped with 94GB of
HBM2e memory, resulting in a total HBM2e memory capacity of 376 GB per
node. The total GPU computational power across all four GPUs in each node
is rated at 268 TFLOPS. The GPUs are interconnected via NVIDIA NVLink
NV6.

The environment is running on Rocky Linux 9.3 with a kernel version of
k08r01s02.novalocal (version 5.14.0-362.24.1.el9_3.0.1) with CUDA 12.4, Nsight
system version 2024.4.1 and SLURM version 23.11.6.

2.2 Benchmarking Software and Procedures

Implementation Frameworks. The fine-tuning of Large Language Models
was conducted utilizing TorchTune - a library within the PyTorch ecosystem.
Torchtune uses recipes for single-device and distributed tuning, depending on
whether one or more GPUs were used. These recipes can be subsequently mod-
ified using custom configuration files in order to perform a wide array of tests
[3].



Efficient Allocation of Image Recognition and LLM Tasks 65

Profiling Tools. NVIDIA Nsight Systems is a comprehensive system-wide per-
formance analysis tool designed to optimize and profile applications running on
NVIDIA GPUs. It provides detailed insights into CPU and GPU interactions,
memory usage, and the performance of CUDA kernels and APIs. By capturing
a holistic view of the system’s behavior, nsys helps identify bottlenecks, analyze
workload distribution, and optimize both CPU and GPU performance.

2.3 Optimization Techniques

Precision. The investigated models support variable precision in computations.
For our experiments, we utilized both double (64-bit), float (32-bit) and half
(16-bit) precision. When reducing the precision of computations from double to
float or half, several significant changes occur in the system’s performance and
resource utilization. The most immediate impact is a reduction in memory usage,
as each value now occupies half the space. This reduction allows for larger batch
sizes or higher resolution images to be processed simultaneously, enhancing the
throughput of the model.

Pin_memory. During the execution of the algorithm, there is active commu-
nication and data exchange between the CPU and GPU. Among the investigated
parameters pin_memory showed positive effects on the algorithm’s performance.
This is a parameter of DataLoader [4] that forces the system to use only page-
locked memory and prevents intermediate data from being swapped to disk. By
locking the memory pages in RAM, it allows for faster and more efficient data
transfers between the CPU and GPU.

2.4 Selected Profiler Metrics

As a result of the conducted tests, a comprehensive review of the metrics offered
by the profiling tools was undertaken, leading to the selection of several key
metrics. Below are some selected metrics that have the greatest impact on the
performance of the tested applications (Table 1).

3 Profiling of Image Recognition

3.1 Benchmarking Model

Mobilenet V2. MobileNet v2 [5] is a convolutional neural network with a
depth of 53 layers, specifically designed for efficient performance in resource-
constrained environments, such as mobile devices. The architecture is character-
ized by an inverted residual structure, wherein the input and output of each resid-
ual block are narrow bottleneck layers, while channel expansion occurs within the
intermediate layers. This design contrasts with traditional residual models, where
expanded representations are utilized at the input and output. MobileNet v2



66 M. Lawenda et al.

Table 1. Selected profiler metrics used for profiling

Metric Description
CUDA memcpy Host-to-Device time taken for data transfer from the CPU memory

to the GPU memory
cudaLaunchKernel time taken to launch a GPU kernel from the host
cudaStreamSynchronize function from the CUDA API designed to

synchronize task execution on the GPU
ncclDevKernel_AllGather time taken by the NCCL to perform the All-Gather

operation using the Ring algorithm with the
Low-Latency protocol

cudaEventSynchronize function is used to synchronize CPU thread with
the GPU by forcing it to wait until all operations
linked to a particular event are fully completed

cudaEventDestroy function is employed to properly release the memory
and other resources associated with an event, once
it is no longer needed

cudaMemcpyAsync asynchronous memory copy function that enables
non-blocking data transfers between di%erent
memory spaces, such as from CPU to GPU,
or between device memories

also employs depthwise separable convolutions, significantly reducing the com-
putational load and the number of parameters, while maintaining high accuracy.

In addition, the removal of non-linearities in the narrow bottleneck layers
prevents information loss, enhancing the model’s capacity for generalization.
These architectural choices make MobileNet v2 highly suitable for deployment
in environments with limited computational resources. The model also supports
adjustable width multipliers, allowing for scalability depending on the available
computational power.

The implementation of MobileNet v2 across several GPUs results in signif-
icant enhancements in both training and inference speeds, especially when pro-
cessing extensive datasets. Its lightweight design and efficient use of parameters
allow the model to scale proficiently with parallel computing, thereby maximiz-
ing the performance of multi-GPU configurations.

3.2 Workload Distribution Strategies

This chapter presents a thorough examination of strategies aimed at improving
the performance of neural model training in the context of increased hardware
capabilities. A range of data distribution methods was explored to emphasize
their differing implementations and effectiveness. A method for achieving paral-
lel execution is Data Parallelism, utilizing PyTorch’s DataParallel mechanism in
three different versions. This approach involves single-process multithreaded par-
allelism, which permits the same model to run concurrently on several GPUs. Its



Efficient Allocation of Image Recognition and LLM Tasks 67

implementation is straightforward, as it does not necessitate additional code for
configuring process groups, making it accessible for existing non-parallel projects.

DDP with no Workload Distribution (DDP). In this case all data sent to GPU
is being processed. It is not being divided it into smaller chunks nor are there
any other restrictions on processing applied. Since we are sending entire dataset
to 4 accelerators, GPUs perform effectively 4 times the work.

DDP with Round-robin Workload Distribution (DDP-RR). This approach intro-
duces a check inside parallelized process function that tests whether a part of
dataset is assigned to a particular GPU. All data is still being sent to all GPUs,
but in this case only a chunk of it is being processed by each of accelerators.

DDP with Distributed Sampler (DDP-DS). Distributed Data Sampler mecha-
nism manages dividing the dataset into samples and parallelized workload dis-
tribution. This requires moving Data Loader logic into parallelized process func-
tion. However, thanks to it, only needed chunks of data are being sent to GPUs.
Given the research focus of this study, the subsequent work will concentrate on
the three most advanced distribution models: DDP, DDP-RR, and DDP-DS.

3.3 Examined Dataset and Results Quality

MNIST Dataset. To evaluate different approaches to GPU load distribution, it is
crucial to ensure that our interventions do not affect the algorithm’s outcomes.
This requires stable input data and a quantifiable metric for neural network
training quality. MNIST is a dataset containing monochrome handwritten digit
images, each sized 28× 28 pixels, with 60,000 training images and 10,000 test
images. After performing several tests, we learned that the 28× 28 pixel size was
too small to significantly load the GPU (memory management and communica-
tion operations predominated over computation). Therefore, the dimensions of
the analysis output images were modified from 100× 100 to 500× 500 pixels in
order to evaluate the impact of this alteration on the GPU load.

Model Training Quality. In the conducted research, we analysed both the
effects of different parameters on the model’s runtime and their impact on com-
putational accuracy. In conclusion, the primary factor for attaining consistent
and satisfactory outcomes was identified as the number of training epochs. Our
objective was to achieve an accuracy rate of 98–99% on the test dataset, which
generally necessitated 20 training epochs. It was observed that enlarging the
image size resulted in an extended model runtime, yet it produced more precise
results.



68 M. Lawenda et al.

3.4 Evaluation of Findings for Image Recognition

Data Distribution Results The Fig. 1 presents the performance testing
results of distributed learning algorithms using 1, 2, 3, and 4 GPUs with various
data distribution strategies: DDP-DS, DDP-RR, and DDP. The experiments
were conducted using FP32 numbers with pinned memory disabled and max-
imum possible picture size 700× 700. The results indicate that the DDP-DS
algorithm effectively scales with the addition of new computational resources,
while DDP-RR and DDP show limited or no performance gains. Therefore, fur-
ther tests will focus on comparing the performance of a single GPU with the
DDP-DS approach.

Fig. 1. Distributed learning algorithm performance scaling, FP32, pin_memory =
FALSE

The Fig. 2 presents the performance results of the DDP-DS algorithm for
image sizes ranging from 100× 100 pixels to 500× 500 pixels. From these graphs,
it is evident that the benefits of adding new GPUs become noticeable only at
a certain image size that can create sufficient load on the computational power
of the GPUs. The graph shows that effective utilization of 4 GPUs is observed
with image sizes starting from 300× 300 pixels.



Efficient Allocation of Image Recognition and LLM Tasks 69

Fig. 2. Execution time (left) and efficiency (right) graphs for image sizes from 100× 100
to 500× 500, FP64, pin_memory = false

Optimization Results

Precision. Switching from double (FP64) to float (FP32) or half (FP16) preci-
sion yields a significant improvement in all presented cases. In Table 2 it can be
observed a consistent increase in computational speed by 54–68% for float and
110–152% for half compared to using the same parameter set with double pre-
cision. Additionally, as shown in the ’Success test dataset’ column, the quality
of results does not deteriorate when transitioning from double to float or half
precision. This can be attributed to the fact that training is performed over 20
epochs, during which the network achieves satisfactory training quality.

Table 2. Comparison of algorithm performance for FP16, FP32 and FP64,
pin_memory = FALSE

GPUsPrecisionTotal
time [s]

Inference
accuracy
[%]

Efficiency
compare
to 1 GPU

Efficiency
compare
to FP64

1 FP64 6 266 99.43 100% -
1 FP32 3 721 99.32 100% 168.38%
1 FP16 2 477 99.57 100% 252.93%
2 FP64 3 339 99.20 187.66% -
2 FP32 2 094 99.24 177.69% 159.45%
2 FP16 1 445 97.94 171.41% 231.07%
3 FP64 2 318 98.70 270.31% -
3 FP32 1 483 99.03 250.91% 156.30%
3 FP16 1 049 99.21 236.12% 220.97%
4 FP64 1 937 99.32 323.48% -
4 FP32 1 256 98.88 296.25% 154.21%
4 FP16 919 99.20 269.53% 210.77%



70 M. Lawenda et al.

Upon examining the profiler and comparing changes in various metrics, we
can observe that the largest reduction in time occurs at the [CUDA memcpy
Host-to-Device] stage and cudaMemcopyAsync. The Host-to-Device copy time
decreases proportionally with a twofold reduction in precision for float, and a
fourfold reduction for half precision, from 226 s for FP64 to 104 s for FP32 and 50 s
for FP16. cudaMemcopyAsync also decreases proportionally: 1 334 s for FP64, 724 s
for FP32 and 478 s for FP16. This is the most significant change. Among other
metrics, there are also changes in ncclDevKernel_Broadcast, where the time
decreases proportionally from 40 s for FP64 to 27 s for FP32 and 15 s for FP16.
Among the remaining metrics, it is also worth noting the cudaEventDestroy
metric, whose execution time decreases threefold or even more, rather than
twofold, with each reduction in precision, from 205 s for FP64 to 84 s for FP32
and 16 s for FP16.

pin_memory. Table 3 presents a performance improvement from using
pin_memory, ranging between 16% and 30%, with the efficiency decreasing
as the number of GPUs increases.

Table 3. Comparison of algorithm performance for pin_memory flag, precision FP32

GPUsPin memoryTotal
time [s]

Inference
accuracy
[%]

Efficiency
compare
to 1 GPU

Efficiency
compare
to FALSE

1 FALSE 3 792 99.30 100.00% -
1 TRUE 2 921 99.41 100.00% 129.78%
2 FALSE 2 205 99.24 171.93% -
2 TRUE 1 733 99.48 168.56% 127.23%
3 FALSE 1 579 99.30 240.01% -
3 TRUE 1 283 98.70 227.57% 123.05%
4 FALSE 1 358 99.20 279.08% -
4 TRUE 1 165 99.36 250.79% 116.62%

The analysis shows that switching to lower precision (FP32 and FP16) from
double precision (FP64) provides significant performance improvements, with
up to 210% speed increase for FP16 without sacrificing inference accuracy.
Using pinned memory (pin_memory) further enhances performance by 16–30%,
though the efficiency gain decreases as the number of GPUs increases. Profiling
reveals that the most substantial time reduction occurs during CUDA Host-to-
Device transfers and cudaMemcopyAsync, with FP16 achieving the lowest times.
However, increasing the number of GPUs and enabling pin_memory also leads
to increased execution times for NCCL kernels, diminishing some of the benefits
obtained from faster Host-to-Device communication. Overall, reduced preci-
sion and optimized memory handling are crucial in enhancing computational
efficiency in multi-GPU environment.



Efficient Allocation of Image Recognition and LLM Tasks 71

Metric Analysis
While analyzing the data provided by the profiler, we found that these opti-
mization techniques affect the execution time of different kernels and mem-
ory operations. We selected four of the most interesting metrics: CUDA memcpy
Host-to-Device, cudaLaunchKernel, cudaStreamSynchronize, and
ncclDe
vKernel_AllGather_RING_LL.

In Fig. 3 we present 8 tests for FP32 with 3 input parameter vari-
ations: image size (100× 100 or 500× 500), number of GPUs (2 or 4),
and pin_memory (true or false). We observe that cudaLaunchKernel and
ncclDevKernel_AllGather_RING_LL take relatively more time when the image
size is small. This indicates that the algorithm spends more time on com-
putation management and distribution than on the computations themselves.
Additionally, it can be seen that the time for CUDA memcpy Host-to-Device
significantly decreases when pin_memory is enabled, but the time spent on
cudaStreamSynchronize increases.

Fig. 3. Diagram with 4 metrics times from NSight System in percent

4 Profiling of Large Language Models

In this part of the study, we evaluate the performance of LLAMA3-8B LoRA
[6] fine-tuning process using differing datasets in a multi-GPU environment.



72 M. Lawenda et al.

Additionally data transfer/communication operations are also explored in this
context. Finally, a comparison of these approaches and conclusions are provided.

4.1 Model Specification

LLama3 is a large language model developed by Meta trained to perform tasks
such as text generation, translation, question answering, and sentiment anal-
ysis [7]. It utilizes transformer architecture with Grouped-Query Attention to
improve inference efficiency. Training was performed on the internet-scale cor-
pus of diverse texts of over 15T tokens. It uses a tokenizer with a vocabulary
of 128K tokens, and its context length (the number of tokens considered by
the model to predict the next word) is set at 8,192 tokens. The LLAMA3-8B
variant of Llama consists of 8 billion parameters, with March, 2023 knowledge
cutoff date. Smaller size makes it less memory demanding and easier to deploy
in various applications. The model can be fine-tuned on specific tasks by further
training it on task-specific data, allowing it to perform better on those tasks.

4.2 LLM Fine-Tuning Process

Fine-tuning is a process separate from model training, that can help the model
improve its performance on particular tasks where additional knowledge is
required beyond what can be learned from general text data alone.

Tuning Techniques. There are several approaches to tuning LLMs. Because
of large number of parameters present in these models, efficient approaches are
necessary. One example is LoRA (Low-Rank Adaptation) - a technique involving
attaching a small number of low-rank adapter layers to a pre-trained LLM. These
are trained on specific downstream tasks and improve performance without mod-
ifying the model’s architecture [8]. LoRA approach reduces the computational
overhead and memory requirements of fine-tuning large language models.

In contrast, Direct Preference Optimization (DPO) directly optimizes the
LLM parameters to maximize the likelihood of generating text that is closest to
provided preference data. It simplifies tuning by not requiring a additional, exter-
nal steps, like separate reward model or Reinforcement Learning from Human
Feedback [9].

Further optimization to LoRA is quantized low rank adaptation (QLoRA),
which additionally utilizes quantization mechanism (compressing model param-
eters to a 4-bit format) to further reduce VRAM requirements at the cost of
increased compute time and slight accuracy loss [10].

The choice between LoRA and DPO for fine-tuning LLMs often depends
on specific goals and constraints of the application. For scenarios where com-
putational efficiency is crucial but flexibility isn’t paramount, LoRA could be a
preferred method due to its efficient parameter usage. As computing performance
is the main focus of this work, it has been chosen for LLM tests.



Efficient Allocation of Image Recognition and LLM Tasks 73

Methodology for LLMs Fine-Tuning. The actual tuning was conducted
utilizing TorchTune using the recipes for single-device and distributed Llama3-
8B LoRA. These recipes were subsequently modified using custom configuration
files in order to perform necessary test variants. These configuration files con-
tain parameters that control and optimize the tuning process. For the following
parameters, the default values were used - batch size: 2, learning rate: 3e-4,
warm-up steps: 100, epochs: 1.

4.3 Investigated Datasets

In order to properly understand the performance impact of tuning, it is first
necessary to understand the differences between datasets used. Here we present
details of a selection of datasets from Torchtune library. Each one uses a particu-
lar template, which are used to format prompts to optimize model performance
on specific tasks, e.g. answering questions, summarizing or correcting errors.
Each template includes the template prompt with placeholders for the data
inputs.

Alpaca-Cleaned: This is a cleaned version of the original Alpaca Dataset
released by Stanford, which was generated by a language model text-davinci-003.
This instruction data is designed for instruction-tuning for pertrained language
models. The tasks consist of answering questions in a concise manner, using
built-in knowledge and reasoning, including classification, instruction following,
and writing. The template used for tuning is InstructTemplate.

C4_200M Synthetic Dataset for Grammatical Error Correction
(grammar). It is the largest of tested datasets and can be used in grammatical
error correction (GEC) tasks. As evidenced, the tasks assigned include finding
words or phrases that contain language errors and replace them with correct
form.

SAMsum. The SAMSum dataset is the smallest of tested datasets and was cre-
ated to emulate conversation styles and topics commonly encountered in messag-
ing apps. Each conversation includes a unique identifier and detailed metadata
such as dialogue text, summary, speaker names, and more. Conversations vary
in formality, containing diverse language including slang, emoticons, and typos.

SlimOrca Dedup. SlimOrca Dedup (slimorca) is a deduplicated, unfiltered
subset of the subset of OpenOrca data, which comprises entries from the FLAN
Collection, augmented by querying GPT-4 or GPT-3.5 API with specific ques-
tions to elicit detailed reasoning responses. Supported tasks include language
modeling, text generation, and augmentation. The template used for tuning is
InstructTemplate, same as Alpaca dataset (Table 4).



74 M. Lawenda et al.

Table 4. Dataset characteristics

Dataset Size (MB)Length (pairs) Tasks Template
Alpaca cleaned 24.1 51,760 Classification,

summarization,
and writing

Instruct

Grammar 3710.5 185,000,000 Correcting
grammatical errors

Grammar Error
Correction

Samsum 10.71 16,369 Conversation
summarization

Summarize

SlimOrca 307 363,491 Language
modeling, text
generation, and
augmentation

Instruct

4.4 Evaluation

All tests in this section were performed using the same value for the following
parameters: batch size:2, learning rate: 3e−4, warm-up steps: 100, epochs: 1.
Detailed information is provided as description to each relevant test.

Optimization Results. Performance impact of dataset being tuned was mea-
sured by determining mean time it takes to complete an iteration - a group
of dataset rows processed concurrently, with its size dependent on number of
GPUs and batch size. Figure 4 depicts average iteration times for LLM tuning
for specified datasets: alpaca-cleaned, grammar, samsum and slimorca, com-
pared when scaling using 1, 2, 3, and 4 GPUs. The experiments were conducted
using FP32 precision with pinned memory option disabled.

The results indicate that there is a slight increase in average iteration time
when adding more GPUs for all datasets. This can be explained by additional
communication and synchronization between GPUs needed for finishing each
iteration. Grammar and samsum appear to have shorter iteration time, whereas
slimorca has the longest. In addition adding more than 2 GPUs appears to
have little effect on iteration time. Of course, utilizing more GPUs reduces the
number of iterations necessary to process the whole dataset, which in turn cuts
total time to fine-tune. All runs testing pin_memory flag were executed on
alpaca-cleaned dataset with FP32 precision and batch size set to 2.

The Table 5 presents a comparison between tuning time run on 1, 2, 3 or
4 GPUs with and without pin_memory flag enabled. There is very little vari-
ation in execution time between cases with and without this flag present. The
performance gains of this option appear to be negligible in case of LLM tuning.

Metric Analysis. Next series of tests utilize profiler data, in order to
measure operations that collectively take up the most computing time



Efficient Allocation of Image Recognition and LLM Tasks 75

Fig. 4. Dataset tuning performance scaling

Table 5. Comparison of pin_memory option performance impact.

GPUs pin_memory Iteration time (s/it) Total timeRelative improvement
1 FALSE 0.77 5:31:52 -
1 TRUE 0.77 5:31:44 0,04%
2 FALSE 0.93 3:20:30 -
2 TRUE 0.92 3:17:21 1,57%
3 FALSE 0.90 2:09:55 -
3 TRUE 0.90 2:09:57 −0,03%
4 FALSE 0.94 1:41:32 -
4 TRUE 0.91 1:37:58 3,50%

- cudaLaunchKernel and cudaStreamSynchronize and memory operations
Host-to-Device.

The tests were performed on different datasets, using a single GPU and FP32
precision. Because tuning process can take up considerable time, which is also
variable between datasets, in order to make a just comparison, profiling results
were collected after first 12min (720 s) of processing in all cases. Additionally,
nccldev_AllGather metric is not included, as it is only executed during dis-
tributed tuning (using more than 1 GPU).

As can be noted in Fig. 5 the general trend appears to be that significant
amount of processing time is spent on launching new kernels and synchroniz-
ing numerous threads. This can be interpreted by the multitude of iterations,
that need to be sequentially executed in order to complete the tuning pro-



76 M. Lawenda et al.

Fig. 5. Cuda API calls time for tested datasets

cess. Additionally, total time spent on executing cudaLaunchKernel operations
seems to correlate with average iteration time of the dataset. Conversely, with
cudaStreamSynchronize calls, there is much less variation in total time and
no such correlation occurs. Therefore, we conclude that communication opera-
tions remain relatively constant on a single GPU, regardless of dataset size or
its tasks, and time spent on launching new kernels is related to the speed of iter-
ation processing. Memory operations do not seem to have a significant impact
on processing time in any case.

For the API call tests for pin_memory flag, analogously as in case of dataset
measurements, profiling results were collected after first 12min of processing.

Fig. 6. Cuda API calls time for pin_memory in seconds (left) and percent (right) dis-
tributed on 1 or 2 GPUs

Chart displayed in Fig. 6 presents profiling data from API calls with respect to
pin memory option. In addition to cudaLaunchKernel, Host-to-Device mem-
ory transfers were measured, as well as nccldev_AllGather in cases where tun-
ing was distributed among multiple GPUs. Because profiling data was gathered
from all accelerators, due to concurrency it is possible for total sum to exceed
720 s.



Efficient Allocation of Image Recognition and LLM Tasks 77

With pin_memory enabled there appears to be a slight increase in already
insignificant Host-to-Device memory operations. Apart from that, there are no
apparent performance gains from using this optimization technique.

In conclusion, with modern hardware it appears even the largest datasets
do not seem to generate enough memory operations to influence tuning process
much. The limited number of memory operations can be explained by small
dataset size relative to model size and performing training with only one epoch,
which means each row in dataset is only used once.

5 Conclusions

In this work authors elaborated efficiency of machine learning and LLM models
utilization at multi-GPU cards system. Two optimization strategies, namely pre-
cision reduction and the use of pin_memory, were proposed and evaluated, with
a thorough analysis of the operational costs conducted using specific metrics.

In the context of the image recognition machine learning model (MobileNet
v2), the analysis indicated that diminishing the precision of calculations (from
FP64 to FP32 and then to FP16) can lead to a remarkable enhancement in com-
putational speed, achieving increases of up to 210% without sacrificing inference
accuracy. Additionally, the implementation of pin_memory contributed to a
further performance boost ranging from 16% to 30%. However, that the per-
formance gains diminish as the number of GPUs increases. The profiling pro-
cess indicated that the most significant reduction in time occurs during the
CUDA Host-to-Device and cudaMemcpyAsync transfers, with FP16 demonstrat-
ing the shortest transfer times. Nevertheless, as the number of GPUs rises and
pin_memory is activated, there is a tendency for longer execution times in
NCCL kernels, which mitigates some of the advantages gained from accelerated
Host-to-Device communication. In summary, the reduction of precision and
the optimization of memory handling are essential for enhancing computational
efficiency in a multi-GPU setting for the MobileNet model.

In the subsequent use case examined (LLM model tuning), a slight increase
in the average iteration time was noted when incorporating additional GPUs (up
to a maximum of two) across all datasets. Throughout the tuning process, the
communication operations remain relatively stable on a single GPU, irrespective
of the dataset size or the tasks involved, while the duration required to initiate
new kernels is associated with the speed of iteration processing. A considerable
amount of the processing time during LLM tuning is attributed to initiating new
kernels and synchronizing multiple threads. Memory operations do not signifi-
cantly contribute to the overall time spent on LLM tuning. The performance
improvement attributed to pin_memory appears to be minimal in the context of
LLM tuning.

The scope of future work includes conducting tests with higher load (larger
individual specimens in respective datasets), identifying new key metrics that
affect performance and searching for further universal optimization techniques
such as using the DALI (NVIDIA Data Loading Library) library.



78 M. Lawenda et al.

Acknowledgements. Funded by the European Union. This work has received funding
from the European High Performance Computing Joint Undertaking and Poland, Ger-
many, Spain, Hungary, France and Greece under grant agreement number: 101093457.
This publication expresses the opinions of the authors and not necessarily those of the
EuroHPC JU and Associated Countries which are not responsible for any use of the
information contained in this publication.

The results presented in this study were prepared using the infrastructure of the
Poznan Supercomputing and Networking Center.

References

1. Lin, Z., Sun, N., Bhattacharya, P., Feng, X., Feng, L., Owens, J.D.: Towards univer-
sal performance modeling for machine learning training on multi-GPU platforms
(2024)

2. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication. In: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS 2004, pp.
133–137, New York, NY, USA, 2004. Association for Computing Machinery (2004)

3. The Linux Foundation. Torchtune config documentation (2024)
4. Martinez-Noriega, E.J., Peng, C., Yokota, R.: High-performance data loader for

large-scale data processing. Electron. Imaging 36(12), 1–6 (2024)
5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. CoRR, abs/1409.1556 (2014)
6. Shui, H., Zhu, Y., Zhuo, F., Sun, Y., Li, D.: An emotion text classification model

based on Llama3-8b using LoRA technique. In: 2024 7th International Conference
on Computer Information Science and Application Technology (CISAT), pp. 380–
383 (2024)

7. Minaee, S., et al.: A survey, Large language models (2024)
8. Edward, J. et al.: LoRA: low-rank adaptation of large language models (2021)
9. Rafailov, R., Sharma, A., Mitchell, E., Manning, C.D., Ermon, S., Finn, C.: Direct

preference optimization: your language model is secretly a reward model. In:
Thirty-seventh Conference on Neural Information Processing Systems (2023)

10. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: QLoRA: Efficient fine-
tuning of quantized LLMS(2023)


