CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 27:937-957
Published online 14 October 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3417

SPECIAL ISSUE PAPER

Adaptation of fluid model EULAG to graphics processing unit
architecture

Krzysztof Andrzej Rojek!* ", Milosz Ciznicki?, Bogdan Rosa?, Piotr Kopta?,
Michal Kulczewskiz, Krzysztof Kurowskiz, Zbigniew Pawel Piotrowski3,
Lukasz Szustak!, Damian Karol Wojcik® and Roman Wyrzykowski'

1 Czestochowa University of Technology, Czestochowa, Poland
2 Poznan Supercomputing and Networking Center Applications, Poznan Wielkopolskia, Poland
3 Institute of Meteorology and Water Management-National Research Institute, Warsaw, Poland

SUMMARY

The goal of this study is to adapt the multiscale fluid solver EULerian or LAGrangian framewrok (EULAG)
to future graphics processing units (GPU) platforms. The EULAG model has the proven record of suc-
cessful applications, and excellent efficiency and scalability on conventional supercomputer architectures.
Currently, the model is being implemented as the new dynamical core of the COSMO weather prediction
framework. Within this study, two main modules of EULAG, namely the multidimensional positive definite
advection transport algorithm (MPDATA) and the variational generalized conjugate residual, elliptic pres-
sure solver Generalized Conjugate Residual (GCR) are analyzed and optimized. In this paper, a method is
proposed, which ensures a comprehensive analysis of the resource consumption including registers, shared,
and global memories. This method allows us to identify bottlenecks of the algorithm, including data trans-
fers between host and global memory, global and shared memories, as well as GPU occupancy. We put
the emphasis on providing a fixed memory access pattern, padding as well as organizing computation in
the MPDATA algorithm. The testing and validation of the new GPU implementation have been carried out
based on modeling decaying turbulence of a homogeneous incompressible fluid in a triply-periodic cube.
Simulations performed using the standard version of EULAG and its new GPU implementation give similar
solutions. Preliminary results show a promising increase in terms of computational efficiency. Copyright ©
2014 John Wiley & Sons, Ltd.

Received 19 May 2014; Revised 20 August 2014; Accepted 14 September 2014

KEY WORDS: parallel programming; GPGPU; CUDA; EULAG; MPDATA; stencils; elliptic solver

1. INTRODUCTION

In recent years, there has been growing interest in employing heterogeneous and hybrid supercom-
puting architectures for modeling complex physical processes. An especially promising application
for new architectures is computational fluid dynamics (CFD), and particularly, the numerical
weather prediction (NWP) [1]. The adaptation of conventional CFD codes to modern supercomput-
ing architectures offers a unique opportunity for modeling complex physical flows with accuracy
greater than ever before. The new parallel computers based on multicore and many-core proces-
sors (CPUs) and graphics processing units (GPUs) enable to increase computational efficiency and
reduce energy consumption [2—4]. Consequently, more computational resources, that is, processing

*Correspondence to: Krzysztof Andrzej Rojek, Czestochowa University of Technology Dabrowskiego 69 St. Czesto-
chowa 42-201 Poland.

TE-mail: krojek @icis.pcz.pl

Copyright © 2014 John Wiley & Sons, Ltd.

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

938 K. A. ROJEK ET AL.

units and memory can be employed. This in turn allows to increase complexity of the models, so
that more details that may affect the evolution of the system can be captured.

To be able to run the traditional codes efficiently on new hybrid platforms, it is necessary to
redesign their structures. Nowadays, several research centers around the world are involved in
various projects aimed at adapting weather forecasting models to future high-performance com-
puting platforms. One of such projects named ‘Performance On Massively Parallel Architectures’
(POMPA) has been launched in 2010 by the COSMO consortium [5]. The goal of the POMPA
project is to develop a prototype implementation of the current COSMO numerical weather pre-
diction (NWP) model for modern GPU-based and CPU-based computing hardware. To-date results
show a large potential of the new implementations in terms of reducing the time-to-solution. It is
worth noting that the hardware cost for running the redesigned model, both on CPU-based and
GPU-based machines, is significantly lower. The newly developed dynamical core is robust and
capable of running COSMO-7 (horizontal resolution of 7 km) and COSMO-2 (horizontal resolution
of 2.2 km), where 2 km grid resolution is nowadays common in regional weather forecast models
used in operation.

The adaptation of traditional NWP codes to new machines based on GPUs allows for increas-
ing the numerical efficiency, and enables one to take full advantage of available computational
resources. This offers a unique opportunity to develop simulations with finer grid resolutions and
larger computational domains. Refined grid resolutions in simulation of meso-scale and large-scale
atmospheric flows for NWP and climate studies may have profound impact on improving the relia-
bility of prognoses. This is because at the convective scales of O(1) km, flows are highly turbulent
and contain a significant amount of energy [1]. In order to explicitly resolve or even admit convec-
tive processes, the grid spacing has to be fine enough. Because of computational constraints, these
processes are grossly under-resolved in today’s simulations.

The new methods and algorithms at work on modern architectures should allow one to dispense
with a large part of convective parameterizations in global models and improve numerical weather
forecasts. The aim of this study is to develop effective methods and algorithms for adapting mul-
tiscale model EULAG [6] to GPU architectures. EULAG belongs to a class of numerical models
for all-scale flows in geophysics and astrophysics. The dynamical core of EULAG is based on
the non-hydrostatic Euler equations, either fully compressible or anelastic. The model employs the
generalized curvilinear coordinate description [7], finite-volume non-oscillatory transport algorithm
multidimensional positive definite advection transport algorithm (MPDATA) [8], and advanced
elliptic solver GCR [9]. Since 2008, EULAG is a candidate for the dynamical core of a very-high
resolution NWP model of the COSMO consortium. The dynamical core of EULAG has consider-
able advantages concerning conservation properties. Moreover, the modeling of atmospheric flows
with EULAG does not impose severe constraints on the maximal allowable steepness of the surface
orography.

In this paper, we focus on the parallelization of the EULAG model and its porting to modern
GPU architectures. For this aim, the analysis of resources usage in GPU platforms and its influence
on the overall system performance are provided. We detect the bottlenecks and develop a method of
efficient distribution of computation across GPU kernels. The proposed method is based on the anal-
ysis of memory transactions between GPU global and shared memories. We unveil crucial details of
different strategies used to accelerate the code execution, namely stencil [10] decomposition, block
decomposition (with weighting analysis between computation and communication), reduction of
inter-memory communication, and register file reusing.

An efficient implementation of seven-point and 27-point stencils on high-end NVIDIA GPUs is
proposed in [11]. The authors present a new method of reading the data from the global memory to
the shared memory. The method avoids conditional statements; however, it extends the size of blocks
stored in the shared memory. The efficient adaptation of the EULAG model to the GPU architecture
requires to store many memory blocks in the shared memory, because the MPDATA algorithm
requires to store six input/output matrices and some intermediate matrices for temporary results.
For that reason, we propose another method that is based on reducing the GPU global memory
transactions and estimating the most preferable number of GPU kernels for the algorithm.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 939

A very common bottleneck of scientific codes is memory bandwidth. The main reason for this is a
low algorithmic flop-per-byte ratio. GPUs offer an impressive computational performance exceeding
a TFlop/s and a memory bandwidth that is often larger than 250 GB/s. Although these numbers
seem high, modern CPU-based architectures can deliver similar performance as the GPUs [11]. The
often reported 100-fold speedups with GPUs are mainly due to a use of a single CPU core and/or
inefficient CPU implementations in the comparison. For many practical problems, the potential
speedup of the GPUs with respect to CPU-based architectures is limited [3].

The paper is organized as follows. Related works are outlined in Section 2, while Section 3
presents the target GPU architectures, as well as the programming environment used in our research.
Sections 4 and 5 describe the adaptation of MPDATA and elliptic solver to the GPU architecture,
respectively. Section 6 presents the synergy between the EULAG components. A validation test case
is presented in Section 7, while Section 8 gives conclusions and future work.

2. RELATED WORKS

Stencil computations on regular grids are kernels for a wide range of scientific codes. Among them
are the MPDATA algorithm and elliptic solver GCR, which form the dynamical core of the EULAG
model. In these computations, each point in a multidimensional grid is updated with contributions
from a subset of its neighbors [12]. Reorganizing stencil calculations to take full advantage of
memory hierarchies has been the subject of much investigation over the years [13-15].

Modern processor architectures tend to be inherently unbalanced concerning the relation of
theoretical peak performance versus memory bandwidth [16]. To reveal performance constraints
for the MPDATA algorithm and GCR solver running on hybrid architectures, we will follow the
simple methodology presented in [17], where attainable performance is estimated based on the
flop-per-byte ratio.

The MPDATA algorithm is among the most time-consuming calculations of the EULAG model
[8, 18]. In our previous works [16, 19, 20], we proposed two decompositions of two-dimensional
(2D) MPDATA computations, which provide adaptation to CPU and GPU architectures sepa-
rately. The obtained performance results showed the possibility of achieving high performance
both on CPU and GPU platforms. Recently [2, 21], we developed a hybrid CPU-GPU version
of 2D MPDATA, to fully utilize all the available computing resources by spreading computations
across the entire machine. This implementation is the starting point for our current work. However,
in this paper, we focus on the three-dimensional (3D) version of the EULAG model. It requires to
analyze and implement the MPDATA algorithm using different methods.

Several different techniques for porting the GCR elliptic solver to hybrid architectures have been
presented in our previous study [18]. The proposed techniques relied on porting the MPI code to the
hybrid MPI + OpenMP version.

Memory optimizations for stencil computations have principally focused on different decomposi-
tion strategies, like space and temporal blocking techniques [22], that attempt to exploit locality by
performing operations on data blocks of a suitable size before moving on to the next block. These
strategies have been used to improve the efficiency of implementing stencil codes on a variety of
multicore/manycore architectures, including CPUs and GPUs (see, e.g., [4, 23-25]).

The issue of adapting the EULAG model to GPU accelerators was discussed in [26], where the
PGI accelerator compiler was used for the automatic parallelization of selected parts of EULAG
on NVIDIA GPUs, including the 2D MPDATA algorithm. However, the disadvantage of this
approach is a complete dependency on the automatic parallelization, without any efforts to guide
the parallelization process taking into account characteristics of target architectures.

A 3.5D-blocking algorithm that performs 2.5D-spatial blocking of the input grid into on-chip
memory for GPUs was discussed in [25]. In present work, we also employ 2.5D blocking tech-
nique to increase data locality, but we propose an alternative solution for memory-bounded kernels,
which is based on minimizing the number of global memory transactions, rather than applying
3.5D-blocking.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

940 K. A. ROJEK ET AL.

Quite large set of techniques of GPU optimizations including data parallelism, threads deploy-
ment, and the GPU memory hierarchy was discussed in [27], where the authors manually evaluated
the best configurations of 2D stencil computations. We offer a model-based solution, which
automatically configures the code, making our solution more portable.

3. GPU ARCHITECTURE AND PROGRAMMING ENVIRONMENT

All the experiments presented in this work are performed using the NVIDIA Tesla K40m GPU
[28], which is based on the Kepler architecture. It includes 15 streaming multiprocessors (SMX),
each consisting of 64 double precision (DP) units with configurable size of 16/32/48 KB of shared
memory and 48/32/16 KB of L1 cache. It gives the total number of 15 * 64 = 960 DP units with
the clock rate of 875.5 MHz, providing the peak performance of 1.68 TFlop/s in DP. This graphics
accelerator card includes 12 GB of global memory with the peak bandwidth of 288 GB/s. All the
accesses to the global memory go through the L2 cache of size 1.5 MB. This GPU supports 64-bit
access mode. The number of load/store unit per SMX is 32, so it gives the possibility to load/store
256 bits at once per SMX.

To manage CPU and GPU components, we take advantage of using the Compute Unified Device
Architecture (CUDA) programming standard [28]. In this paper, we use CUDA V5.5.0 assuming
some prior knowledge about CUDA programming and terminology. For an informative description
of the crucial aspects of GPU programming, the reader is referred to work [29]. CUDA is a scalable
parallel programming model and a software environment for parallel computing. It allows for the
utilization of a GPU as an application accelerator, when a part of an application is executed on a
standard CPU processor, while another part is assigned to the GPU, as the so-called kernel.

CUDA enable for the efficient management of GPU computing resources, beginning with GPU
CUDA cores that are grouped into SMX. In the CUDA data parallel model, the same program (or
kernel) runs concurrently on different pieces of data, and each invocation is called a thread. The
threads are organized in up to three dimensions. The set of threads is called a block. Each block is
executed on a single SMX. Threads can be synchronized within a single block. However, there is no
synchronization mechanism between blocks; they are executed independently. Threads within the
block are organized in warps. The warp is a vector of 32 threads that actually executes the code. The
block size is a multiple of warp size, even if fewer threads are requested.

Another key feature of modern GPUs is their hierarchical memory organization. In the CUDA
memory model, all the GPU threads have access to the global memory, relatively large but rather
slow. Within a particular block, all the threads share the fast shared memory. It is used for commu-
nication and synchronization among threads across the block. In addition, each thread has access to
its register file. Furthermore, the L1 and L2 caches are applied to improve the data locality for mem-
ory accesses. In particular, all the accesses to the global memory go through L2, including copies
to/from the CPU host.

Stencil algorithms that are of prime interest in this paper are commonly known as memory
bounded [17]. Therefore, the memory bandwidth benchmarks, with both Error Correcting Code
(ECC) mode switched on and off, are performed to find the maximum achievable performance, see
Table I. The memory bandwidth benchmarks are based on a method proposed in [30]. Similarly
to the reduction algorithm, a large array of floats is added up; however, the results are stored in a
smaller array. Each thread reads two groups of four floats using __/dg intrinsic to utilize the read
only data cache.

Table I. Benchmarked memory bandwidth of Kepler architecture.

Maximum Measured Measured
Platform bandwidth bandwidth (ECC =1) bandwidth (ECC = 0)
Kepler K20m 208 GB/s 143 GB/s 173 GB/s
Kepler K40m 288 GB/s 196 GB/s 233 GB/s
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957

DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 941

4. ADAPTATION OF ADVECTION TRANSPORT ALGORITHM MPDATA TO GPU
ARCHITECTURE

In this section, we present our new approach that allows us to efficiently distribute computational
tasks of MPDATA across GPU resources. The proposed technique is based on the optimization
of stencil computations, and is an extension of the concept described in our previous studies
[19-21, 31].

The MPDATA algorithm is a set of 17 stencils, where each stencil may depend on one or more
others. It requires to load five input matrices, and returns only a single output matrix. We assume
that the size of the 3D MPDATA grid determined by coordinates i, j, and k isn x m x [.

4.1. Processing GPU kernels

To increase the data locality within CUDA blocks, we employ a widely used method of 2.5D block-
ing [25], in which 2D blocks are responsible for computing g; x g, data chunks, which correspond
to sub-planes of a matrix, called here tiles. Between neighboring blocks, some extra computations
take place on the borders. As a consequence, blocks have to be extended by adequate halo areas,
both in vertical and horizontal directions.

The loop inside a GPU kernel is used to traverse the grid in the dimension /. Because the
MPDATA algorithm requires to store at most 3 X (g1 X g») data chunks at the same time, we use
a queue of data chunks placed in registers and shared memory. In this approach, we first copy data
from the GPU global memory to registers, and then, for each iteration across the dimension /, we
move data between registers and shared memory. This method is illustrated in Figure 1.

The main advantage of this technique in relation to the 3D blocking is the reduction of memory
requirements. We need to store only three tiles of each matrix instead of the entire column of size
[to keep the same intensity of memory traffic between the global memory and shared memory or
register file. It is particularly useful for GPUs, where the size of shared memory is too small to store
3D blocks of matrices.

4.2. Analysis of 3D MPDATA with NVIDIA visual profiler

The starting point of our considerations is when all the 17 stencils are distributed across six GPU
kernels marked as A, B, C, D, E, and F (this distribution takes into account synchronization points
of MPDATA). Such a number of kernels is selected for the following reasons: (1) the stencils are

‘

kernel

%) I Queue for each thread:
c regs2 . .
2| |CUDA ‘ srt;%rseld 1. Data chunk is copied from
S| | block [Eomputed] shared to regsl
2 Gompted 2. Data chunk is copied from
regs2 to shared
3. Data chunk is copied from

global mem. to regs2

Figure 1. Graphics processing units kernel processing.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

942 K. A.ROJEK ET AL.

for (k

(k=1; k<l-1; ++k) {
ql (

fmax (0.0,v3(i,3,k+1))*x(1i,3,k)
+fmin(0.0,v3 (1,3, k+1))*x (1,7, k+1);

xP[ijk]=x[1jk] - (fmax(0.0,v1(i+1,3,k))*x(1i,5,k)
+fmin(0.0,v1(i+1,7j,k))*x(i+1,7,k)-fmax(0.0,v1i(i,J,k))*x(i-1,7,k)

-fmin(0.0,v1(i,7,k))*x(i,]j,k)+fmax(0.0,v2(1i,j+1,k))*x (1,7, k)
+fmin(0.0,v2(i,3+1,k))*x(1i,j+1,k)-fmax(0.0,v2(i,J,k))+x(i,j-1,k)
-fmin(0.0,v2(i,3j,k))*x(i,3,k)+gl-gq0)/h[ijk];

a0 = ql;

ijk+=M;

}

Figure 2. Multidimensional positive definite advection transport algorithm stencil corresponding to kernel
A (kernel F is of the same structure).

v1[ijk]=(0.5+fabs (v1(i,j,k))-vl(i,q,k)*v1l(i,g,k)/
(h(i-1,3,k)+h(i,3,k))
)% (xP(i,5,k)-xP(i-1,9,k))
-0.0625%v1(i,q,k)/(h(i-1,9,k)+h(i,q,k))+

(v2(1i-1,3,k)+v2(1i-1,J+1,k)+v2(i,j+1,k)+v2(i,j,k))=*

(xP(i,j+1,k)+xP(i-1,j+1,k)-xP(i,j-1,k)-xP(i-1,j-1,k))+

(v3(1i-1,3,k)+v3(i-1,7,k+1)+v3(i,J, k+1)+v3(i,7,k))=*

(xP(i,j,k+1)+xP(i-1,7,k+1)-xP(i,7,k-1)-xP(i-1,7,k-1))
)

Figure 3. Stencil corresponding to computing pseudo velocity v1 (part of kernel B); kernel C of the same
structure computes pseudo velocity v3 while computing pseudo velocity v2 is distributed across kernels B
and C.

distributed in such a way that for each kernel, the halo area from any side of a CUDA block does
not exceed 1; (2) the most memory-consuming and register-consuming stencils are implemented in
kernels B and C in order to increase the GPU occupancy, defined as the number of active threads
per SMX divided by the maximum number of threads supported by SMX. This version of our
implementation is further referred to as the naive one. In this version, we applied the most common
techniques of optimization, including the usage of the shared memory, coalesced memory access
[29], and 2.5D blocking. The kernels A and F are responsible for computing the donor-cell scheme
(Figure 2) of MPDATA, the kernels B and C compute pseudo velocities (Figure 3), while the kernels
D and E implement the non-oscillatory option for the MPDATA algorithm [2]. Here, the variables
vl, v2, and v3 correspond to pseudo velocities in the x, y, and z directions, respectively, while
variable x is a non-negative scalar field.

Our idea of efficient adaptation of MPDATA to GPU architectures is based on the detection of
bottlenecks, and allows for reducing the most notable of them. We examine the following potential
bottlenecks:

data transfers between GPU global memory and host memorys;

instructions latency (stall analysis);

arithmetic, logic, and shared memory operations; and

configuration of the algorithm taking into account the size of CUDA blocks, and GPU
occupancy.

To overlap computation and data transfers between GPU global memory and host memory, we
employ the stream processing technique [21], where each stream is responsible for performing a
sequence of three activities including the following: (1) data transfer from host to GPU that occurs
only once (before computations); (2) executing a sequence of six GPU kernels; (iii) data transfer
from GPU to host memory (occurs after every time step). All the activities are processed syn-
chronously within a single stream. However, all the streams are processed asynchronously. Thanks
to that, the activities from one stream are overlapped by the activities from another one. Table II
shows the time consumption analysis of MPDATA for 100 time steps and grid of size 392 x256 x 64.
Three streams are used in the simulation. The HTOD abbreviation corresponds to data transfers
from host to GPU device, while the DTOH corresponds to data transfers in the opposite direction.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 943

Table II. Time consumption analysis of 3D

MPDATA algorithm.
Activity Time [s] RatioR
HTOD 0.023 0.008
DTOH 0.453 0.172
Total time of computation 3.051 1.16
Total execution time 2.631 1

3D, three dimensional; MPDATA, multidimensional
positive definite advection transport algorithm.

Stall Reasons

execution
" dependency
data
request
texture —— instruction
,_..gd fetch

synchronization

other

Figure 4. Analysis of stall reasons for kernels B and C.

The parameter R is computed as the ratio of the time required for a certain activity to the total
execution time. It is worth noting that because of overlapping between the execution of kernels in
different streams, the total execution time is shorter than the total time of computation.

Based on this analysis, we can see that the data transfer takes a relatively short time (about 18%
of the total execution time). The stream processing decreases the execution time by 0.023 + 0.453 +
3.051—-2.631 = 0.896 s, which is about two times more than time of data transfers. We can conclude
that data transfers between host and GPU are not a bottleneck of the MPDATA algorithm.

The next analysis is devoted to the stall reasons analysis. Figure 4 shows the main reasons of stalls
for kernels B and C, including the analysis of execution dependency, data request, texture memory
operations, synchronization, and instruction fetch.

Based on the analysis, stalls are mostly caused by the execution dependency (about 33%). This
kind of stalls results from the complex structure of the MPDATA algorithm, and limits the GPU
utilization. The execution dependencies can be hidden in part by increasing the GPU occupancy.
However, each of the kernels B and C uses about 47 KB of shared memory for an active CUDA
blocks, executing only 768 active threads per SMX (maximum is 2048 threads). It means that the
GPU occupancy is only 37.5% for both kernels. So the final conclusion is that the GPU utilization
is limited by the shared memory usage.

To perform the analysis of computation within kernels, we focus on the most complex part of the
MPDATA algorithm. Using NVIDIA Visual Profiler tool, we select the kernels B and C as the most
time-consuming ones. They take about 57% of the total computation time. Each of these kernels has
five input and three output matrices, and is responsible for computing three stencils with 37 flops
per each. Assuming DP data, the flop-per-byte ratio for each kernel is 37 x 3/((5 + 3) * 8) = 1.73,

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

85U801 7 SUOWILLOD 3AIERID 3|edldde 3y Aq pauienob e ssjoie O ‘88N JOSs|nJ 10} Akeiq8UIIUO AB|1M UO (SUORIPUOD-pUR-SLLLBILI0 A3 1M AReiq 1 [euUo//SARU) SUORIPUOD PUe SWi L 38U} 88S *[£202/T0/50] Uo Aiqiauliuo ABjIM O AISRAIIN BMOY0IS8ZD AQ LTHE d0/200T 0T/10p/W0d A8 | M AReiq U0/ Sdny Wwoiy papeojumod ‘v ‘STOZ ‘vE90ZEST

944 K. A.ROJEK ET AL.

while the minimum flop-per-byte ratio required by NVIDIA Tesla K40m to achieve the maximum
performance is 5.2 [28]. This estimation confirms the memory-bounded nature of MPDATA stencils
when implementing on GPUs.

This preliminary analysis shows also that the largest performance gain can be achieved by pro-
viding the memory optimizations. The main challenge is to find a solution where data transfers from
the global to shared memory or register file are minimized.

4.3. Performance analysis based on GPU global memory transactions

Our idea of adaptation is based on an appropriate distribution of stencils across GPU kernels in
order to minimize the number of memory transactions between shared and global memory. For this
aim, we propose a method where a different number of kernels is considered. In each configura-
tion, a single kernel processes a different number of stencils. We estimate the number of memory
transactions for each configuration, and then select a configuration where the number of memory
transactions is minimized.

The starting point for the optimization is a comprehensive analysis of data flows when execut-
ing MPDATA. The distribution of computational tasks is preceded by the estimation of the shared
memory utilization, sizes of halo areas, as well as data dependencies between and within stencils.
Based on such an extensive analysis, we are able to specify the most favorable number of kernels,
as well as select an optimal distribution of stencils across kernels, and the sizes of CUDA blocks for
each kernel. As a consequence, an efficient load balancing is preserved, and data communication is
minimized and well structured.

To illustrate our method, we explain the procedure of estimating the number of kernels for the
most time-consuming part of the MPDATA algorithm. In this example, we have three stencils, where
the first of them is shown in Figure 3. It is a part of kernel B. The remaining two stencils are of the
same algorithmic complexity.

In our approach, the following scenarios are considered:

e distribution of computation (three stencils) across two kernels B and C; and
e compression of computation within one kernel BC.

The compression of computation increases hardware requirements for CUDA blocks, and
decreases the GPU occupancy. However, it allows for reducing the number of temporary matrices,
and thereby, it decreases the memory traffic.

At the beginning of the analysis, we need to estimate the cost of access to a certain matrix, for
each scenario. We assume that a CUDA block is of size g1 X g, matrices are processed according
to Figure 1. Moreover, the halo areas with size 1 are located on the four boundaries of each CUDA
block (Figure 5). The number of elements that need to be transferred from the GPU global memory
to shared memory (or register file) is given by the following formula:

Ser =g1%g2+2%gr+2x%xg1. (D
g2
T
g1 g1xg2

uncoalesced
memory access CTTTTTTITTIT]

Figure 5. XY-tile of a certain matrix, assigned to a CUDA block, with halo areas.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 945

Taking into account the size of global memory transaction (128B) [29], element of the matrix
(8B), as well as parameters g; and g,, we can estimate the number of memory transactions within
each CUDA block, for a single XY-tile of the matrix (Figure 5):

S = g1 *xtop(g2/16) + 2 x top(g2/16) + 2 * g1, 2

where top (x) returns rounded up value of x, and value of 16 is the ratio of the size of global memory
transaction to the size of element of the matrix. In this approach, the addresses of vertical halo areas
are not coalesced.

Table III shows the cost of the memory access for the first scenario, where the XY-tile is of size
392 x 256. The access overhead is the ratio between the actual number of transactions required to
transfer the matrix and a lower limit of memory transactions. This limit corresponds to an infinite
size of shared memory, which allows for eliminating halo areas completely. For a tile of size 392 x
256, the lower limit of transactions is 392 % 256/16 = 6272. Based on Table III, we conclude that
the minimum access overhead is 159.95% for the first scenario, which gives the optimal number of
transactions equal to 6272 * 159.95% = 10032. Also, this analysis allows us to estimate the most
suitable size of CUDA blocks as 6 x 128.

A similar analysis is made for the second scenario (Table IV). Now, the most suitable size of
CUDA blocks is 4x 64, while the access overhead is 200%.

Finally, we estimate the cost of access to all the matrices for both scenarios. Figure 6 shows the
flow diagram for the kernels B and C. There are five input matrices for the kernel B, and six input
matrices for the kernel C. Additionally, there are two output matrices per each kernel. For each
matrix, the access overhead is 159.95%, so the total cost of access to all the matrices is (5 + 6 +
2 42) % 1.5995 = 23.99.

Table III. Analysis of GPU global memory transactions: first scenario.

Blocks per Transactions Transactions Access
gl g2 tile per block per tile overhead [%]
6 128 132 76 10032 159.95
5 128 158 66 10428 166.26
12 64 132 80 10560 168.37
11 64 144 74 10656 169.90
10 64 160 68 10880 173.47
9 64 176 62 10912 173.98
4 128 196 56 10976 175.00
8 64 196 56 10976 175.00

GPU, graphics processing unit.

Table IV. Analysis of GPU global memory transactions: second scenario.

Blocks per Transactions Transactions Access
gl g2 tile per block per tile overhead [%]
4 64 392 32 12544 200.00
3 64 524 26 13624 217.22
2 128 392 36 14112 225.00
8 32 392 36 14112 225.00
7 32 448 32 14336 228.57
6 32 528 28 14784 235.71
5 32 632 24 15168 241.84
2 64 784 20 15680 250.00
GPU, graphics processing unit.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957

DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

946 K. A. ROJEK ET AL.
Input: Input:
17l 2, 18, [y, 5% f1, 2, 3, h, x, v2
Output: Output:
v1,v2 v2,v3

Figure 6. Flow diagram for kernels B and C.

Input:
f1,2, 13, h, x

Output:
v1,v2,v3

Figure 7. Flow diagram for BC kernel.

Table V. Summary of MPDATA analysis.

Kernels B and C Kernel BC Ratio

Occupancy 37.50% 25.00% 1.5
Access overhead 159.95% 200.00% 0.80
of matrices 15 8 1.85
Total cost of access 23.99 16 1.50
MPDATA, multidimensional positive definite advection transport
algorithm.

Table VI. Performance results for both scenarios.

Mflops per Time per Performance Speedup
Kernel scenario scenario [ms] [Gflop/s]
BandC 963.4 15.49 62.29 1
BC 847.8 10.45 80.95 1.48

The flow diagram for the second scenario is shown in Figure 7. Here, we have five input and
three output matrices. The access overhead is 200%. So, the total cost of access to the all matrices
is estimated as (5 + 3) x 2.0 = 16.

Table V shows the summary of the MPDATA analysis, taking into account the considered scenar-
ios. It can be concluded that the number of transactions to the GPU global memory can be greatly
reduced by merging two kernels into one. The expected performance speedup is about 1.5.

Table VI presents the performance results for both scenarios. In our tests, we used a single
NVIDIA Tesla K40m GPU. The MPDATA algorithm is tested for the grid of size 392 x 256 x 64.
The achieved results are far from the GPU peak performance because of the complexity of the algo-
rithm, intensive data traffic to the global memory, strong instruction and data dependencies, as well
as the shared memory size limitation.

Based on Table VI, we conclude that our method of compressing stencils across kernels allows
for increasing the MPDATA performance by about 1.48 times, for the two considered kernels. Such
a speedup is very close to the expected.

A similar analysis is provided for other combinations of kernels. In consequence, the best
configuration of the MPDATA algorithm is the distribution of its 17 stencils across 4 GPU kernels.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 947

4.4. Performance results for MPDATA algorithm

To examine the performance of the MPDATA algorithm, a number of numerical experiments have
been performed. We compare the parallel performance of the original CPU version of MPDATA
with two GPU implementations. The CPU used in the tests is Intel Core i7-3770 with 3.4 GHz
clock frequency, consisting of four cores. The input data were defined as an array of random values.
The first GPU version (naive one) is not optimized for GPU global memory transactions, so the
MPDATA stencils are distributed across six kernels. The second version (improved one) is based on
our performance analysis, and all the stencils are compressed into four kernels.

The sizes of grid range from 16 x 16 x 16 to 512 x 512 x 64. The CPU tests have been performed
for both a sequential configuration with a single core, and parallel version with four cores. All the
tests have been conducted for 100 time steps. The performance results are listed in Table VII, which
shows that our GPU implementation allows for achieving speedup of about 7 over the parallel CPU
version, and about 22 over the sequential version. The speedups for all the grid sizes are shown in
Figure 8. The use of GPU is profitable for the grid sizes greater than or equal to 64 x 64 x 16, because
computations on smaller grids do not allow us to take full advantages of GPU resources. It is worth
noting that the improved GPU version gives 1.35 speedup over the naive GPU implementation.

Table VII. Execution time and speedup for MPDATA algorithm, where 7 corresponds
to MPDATA execution using only a single CPU core.

CPU GPU Speedup
4 cores naive improved
Grid size T> [s] T3 [s] Ty [s] Ti/Ts T1/Ta To/Tz T2/T4
16 x 16 x 16 0.016 0.087 0.056 0.51 0.79 0.18 0.29
32x32x 16 0.048 0.1 0.059 1.64 2.78 0.48 0.81
64x64x16 0.192 0.112 0.076 5.68 8.37 1.71 2.53
64 x 64 x 64 0.776 0.366 0.237 7.15 11.04 2.12 3.27

128 x 128 x 64 3.316 0.792 0.567 13.24 18.49 4.19 5.85
128 x 128 x 128 6.624 1.583 1.166 13.15 17.85 4.18 5.68
256 x 256 x 64 12.868 2.56 1.838 15.77 21.97 5.03 7.00

256 x 256 x 128 24.373 5.221 3.728 4.67 6.54
256 x 256 x 256 52.776 10.516 7.525 5.02 7.01
512 x 512 x 64 50.743 9.689 7.027 5.24 7.22

MPDATA, multidimensional positive definite advection transport algorithm.

25.00

20.00

15.00

=== 4 cores/GPU (a)
== 4 cores/GPU (b)
1 cores/GPU (a)
1 cores/GPU (b)

Speedup

10.00 —

500 ———

0.00 T T T T T T
64x64x16 256x256x64
16x16x16 128x128x64 256x256x256

Grid size (n xm x1)
Figure 8. Speedups of graphics processing unit over central processing unit for multidimensional positive

definite advection transport algorithm.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

948 K. A. ROJEK ET AL.

gerk () {

prforc ()

divrhs ()

precon ()

reduction()

laplc()

for it=1..solver iterations ({
reduction ()
if (exit) quit_for_ loops;
precon ()
laplc ()

}
Figure 9. The body of the elliptic solver code.

5. ADAPTATION OF ELLIPTIC SOLVER COMPUTATION TO GPU ARCHITECTURE

5.1. Main objectives

This section describes the parallelization approach to the GCR elliptic solver. The body of the ellip-
tic solver code consists of five major routines (Figure 9). The main routine advances the solution
iteratively by calling other major computational routines. The routines prforc and divrhs initialize
the solver. The former routine evaluates the first guess of the updated velocity, by combining the
explicit part of the solution and the estimation of the generalized pressure gradient, while imposing
an appropriate boundary condition. The latter routine evaluates the density weighted divergence of
the velocity, and thus, the initial residual error of the elliptic problem for pressure is computed.

Among the most computationally intensive routine of the GCR solver is laplc that iteratively
evaluates the generalized Laplacian operator (a combination of divergence and gradient) acting on
residual errors. Another important part of the solver is the precon routine that accelerates the conver-
gence of the variational scheme. By performing the direct matrix inversion in the vertical dimension
of the grid, it is especially useful for large-scale simulations on thin spherical shells with grids
characterized by a large anisotropy. The routine precon employs the sequential Thomas algorithm
[32] to solve tridiagonal systems of equations with the right-hand side consisting of the horizon-
tal divergence of the generalized horizontal gradient. This gradient is evaluated by nablaCnablaxy,
which also belongs to the most computationally intensive routines of the GCR solver. With regard
to the data access pattern, the computational loops within the elliptic solver can be simply divided
into three categories: (1) reductions; (2) implicit methods of the Thomas algorithm; and (3) explicit
methods of the stencils.

5.2. Preliminary analysis of numerical performance

To evaluate the numerical performance of the developed GPU implementation of the GCR solver,
we use a standard metric for measuring the computational intensity. This metric, denoted as Q
[33], is defined for each routine as the ratio of the number of arithmetic operations to the amount
of required data. This amount is expressed in bytes for DP quantities, and takes into account both
reading and writing operations. The constant values are not included in the metric, as they can be
easily cached by the compiler in the registers.

Table VIII presents the computational intensity Q of an unoptimized GPU code for the main
routines of the elliptic solver. The unoptimized GPU code is strictly based on the CPU code. In the
Kepler K40m accelerator, the time needed for computing 5 DP operations is equal to the read time of
1 byte of data from the global memory. Thus, the performance of all functions in the elliptic solver
is strongly bounded by the global memory bandwidth. Each of them requires more than 10 bytes of
data to compute one operation.

Therefore, increasing the computational intensity is crucial for improving the performance of
the elliptic solver. This can be achieved by both reducing the memory traffic and increasing the
number of arithmetic operations. To address these issues, we analyze the data dependencies between

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 949

Table VIII. Computational intensity per grid element.

Routine name

Platform precon prforce divrhs laplc GCR
of operations 18 27 15 33 297

Unoptimized GPU # of bytes 255 289 170 604 4329
QunGPU 0.07 009 009 0.05 007

GPU, graphics processing unit.

Algorithm 1 Original 2D horizontal decomposition

1. procedure HORIZONTALDECOMPOSITION(f, p, p33, r, dni, €)

2 for k =3..1,j =1.mp,i = 1l.npdo

3 fli g, k) = (p33(i, 7,k — 1) = f(i, 4,k — 2) + (i, j, k)) = dni(i, j, k)
4 end for

5: fork=101—-2.1,7=1.mp,i =1..npdo

6 p(i,j,k’):e(i,j,k)*p(i,j,k:—i—?)—i—f(i,j,k:)

7 end for
8: end procedure

the computational loops. Based on the analysis, we try to merge them to increase the computational
intensity. The next two subsections describe the methodology of optimization, which is applied to
selected routines of the elliptic solver.

5.3. Preconditioner optimization

The preconditioner employs the sequential Thomas algorithm [32] to solve tridiagonal systems
of equations. There are two different implementations of this algorithm, depending on the paral-
lelization method or, equivalently, on the domain decomposition scheme. The standard version is
dedicated to the 2D horizontal decomposition. For implementations that use the 3D domain decom-
position, the version based on the recurrence doubling approach is preferable. A detailed description
of the recurrence doubling version can be found in [34].

Algorithm 1 shows the structure of the 2D horizontal decomposition where np and mp are sub-
domain sizes in the horizontal directions. The detailed description of all the variables can be found
in [35]. The data dependencies in both loops imply that this decomposition is more suitable for
the usage on a single graphic card than the 3D decomposition. The numerical scheme of our GPU
implementation is shown in Algorithm 2.

To minimize the global memory traffic, two loops that compute the matrices f and p have to be
join into a single CUDA kernel, where each thread operates on a vertical column of the size /. The
computation of the matrix f is performed by using registers to eliminate global memory accesses
caused by the reference to the f(k — 2) element. The shared memory could be used to cache access
to the f(k — 2) element, but still the registers would provide a lower access latency. At the end,
the f matrix is saved in the shared memory. To compute the p matrix, the f matrix is read from
the shared memory, and similarly, the usage of registers eliminates the k + 2 global memory access
pattern. These optimizations improve the computational intensity of the preconditioner routine from
0.07 to 0.132.

5.4. Stencil optimization

Here, we demonstrate our approach to optimize the stencil computation by the example of comput-
ing the 3D Laplacian, which involves six computational loops defined as stencils. In these stencils,
each element has access only to one neighboring element on both sides, for the i — th, j — th,

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

950 K. A. ROJEK ET AL.

Algorithm 2 Optimized 2D horizontal decomposition on GPU

1: procedure HORIZONTALDECOMPOSITIONGPU(f, p, p33, r, dni, e)
2 fsm(1) = fregl = f(1); fsm(2) = freg0 = f(2)

3 for £ =3..0do

4 freg2 = fregl; fregl = freg0

s: fsm(k) = freg0 = (p33(k — 1) * f(k —2) + r(k)) * dni(k)
6: end for

7. pregl = p(l); preg0 = p(l — 1)

8 fork=1—-2.1do

9: preg2 = pregl;pregl = preg0

10: p(k) = preg0 = e(k) % preg2 + fsm(k)

11: end for

12: end procedure

and k — th dimensions (Figure 10a), where the domain boundaries have to be handled specifically.
To improve the computational intensity, we join these computational loops into one kernel, see
Figure 10b.

This transformation creates a larger stencil with the new access pattern. In this new pattern, each
element accesses a distant neighbor that is one element away from the currently updated position.
The distant neighbors, similarly to stencils before the transformation, have to be accessed on both
sides for the i-th, j-th, and k-th directions. The 2.5D blocking technique described in Section 4
efficiently caches the neighbor elements in the shared memory and reduces the global memory
traffic. That is, we decompose the domain into 3D blocks, where a horizontal tile defined by the i-
th and j-th directions is written to the shared memory, and the values defined by the k-th direction
are written to the registers. The additional data, called halo, are written to the shared memory and
register in order to compute properly elements on the 3D block boundaries. Thus, some elements
are read more than once, and their number depends on the 3D block sizes. These sizes are mainly
constrained by the size of the shared memory and the number of available registers. We minimize
the number of the global memory transactions by selecting suitable sizes of the 3D blocks.

The memory transactions are defined at the granularity of L2 cache lines. The 3D block sizes
that are close in shape to cube limit the halo size. Moreover, the 3D block sizes affect the number
of active warps (Section 3). The larger number of active warps can be obtained by larger 3D block
or by the higher number of smaller 3D blocks. The large number of concurrently executed warps
allows us to hide a latency caused by accesses to the global memory. Therefore, in this work, a
runtime method is developed to select the 3D block sizes (Algorithm 3) that optimize both the halo
size and the number of active warps.

a) b)
.
T
JEE HN

r [T T

Figure 10. Access patterns for stencils before (a) and after (b) optimization: (a) two stencils computing px

(partial derivative of p in x direction) and r (partial derivative of px in x direction) in the i-th direction;

the same applies to j-th and k-th direction; (b) the stencil pattern in the i-th and j-th directions after
transformation.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 951

Algorithm 3 Dynamic calculation of block size

1: for blockSize = maxThreadsPerBlock..warpSize, —warpSize do
2: nBlocks = maxActive BlocksPerSM X (blockSize, sharedMemPerTh,regsPerTh)
3: nActiveWarps = (nBlocks * blockSize) /warpSize
4: if then activeWarps == maxActiveW arps
5: list.push(blockSize)
6: else
7: if then activeW arps > maxActiveW arps
8: list.clear()
9: list.push(blockSize)
10: maxActiveW arps = activeW arps
11 end if
12: end if
13: end for
14: for blockSize in list do
15: nTransactions = calcTransactions(blockSize)
16: if then nTransactions < bestNTransactions
17: best NTransactions = nT'ransactions
18: bestBlockSize = blockSize
19: end if
20: end for

In Algorithm 3, maxThreadsPerBlock represents the maximum block size available for the
target GPU architecture. For each block size, the function maxActiveBlocksPerSM X estimates
the SMX occupancy, based on the number of shared memory bytes, and the number of regis-
ters utilized by each thread. For the Kepler architecture, the largest occupancy can be achieved
with 64 active warps per one SMX. Next, for the selected blocks, the calcTransactions func-
tion calculates the number of transactions to the global memory. The largest block size with the
lowest number of transactions to the global memory is selected finally. Thus, we maximize the
SMX occupancy and minimize the required memory traffic. The selected sizes of blocks for the
3D Laplacian on cubic domains are shown in Table IX. The optimal sizes of blocks are deter-
mined by the brute-force search, whereas the dynamic sizes are selected by our method. Figure 11
presents the performance comparison for the 3D Laplacian using both approaches. Our method
achieves no less than 90% and 95% of the optimal performance for small and large domains,
respectively.

To sum up, all the described optimizations reduced the number of bytes moved to/from global
memory per element by a half. In consequence, they improved the computational intensity of the
laplc routine from 0.05 to 0.132.

5.5. Testing performance

The performance of the new GPU implementation is tested using the dual-socket Intel Xeon E5-
2670 CPU with 16 cores clocked at 2.6 GHz, and Kepler K40m GPU. To compare the performance
of CPU and GPU processors solely, the data transfer time between the host memory and GPU is not
included into the GPU timings. During computations, all the data are available in the GPU global
memory, and the full data set is asynchronously transferred to CPU after every 100 iterations.
Figure 12 shows the performance of the CPU and GPU implementations obtained in two different
numerical tests. Test 1 refers to the flow in a cube with triply-periodic boundaries. Test 2 is a simula-
tion of the flow on a sphere with non-periodic boundaries in the vertical. Additionally, test 2 utilizes
the preconditioner in the horizontal direction. Both tests were conducted with one GCR iteration.
It turned out that the GPU implementation is about four times faster than the CPU implementation.
The speedup grows with the increase of domain sizes as the kernels utilize GPU resources more

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

952 K. A. ROJEK ET AL.
Table IX. Selected sizes of the block for the 3D Laplacian.
Block
Domain Optimal Dynamic
N3 X Y Z GFlops X Y Z GFlopls
643 64 8 16 38.6 64 16 5 349
1283 128 7 64 56.3 128 8 20 56.1
1923 112 6 96 56.1 128 8 66 522
2563 9% 7 64 56.8 9% 7 256 55.9
3203 32 16 80 544 32 32 161 52.9
3843 32 26 48 56.6 32 32 384 532
4483 32 32 56 55.1 32 32 448 53.4
5123 32 32 64 55.7 32 32 512 53.8
5763 64 16 576 553 32 32 576 54.2
3D, three dimensional.
60
55
50
E 45
&
40
—— Optimal - brute force
35 i -4 Dynamic — calc at runtime
30
1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09
Domain size
Figure 11. Performance tests for the 3D Laplacian using various sizes of the blocks.
10000
1000
g 100
g
.’
10
- @ T1-Kepler K40
-=%--'T2 - Kepler K40
--¥--T1 - 2xXeon E5-2670
v —&— T2 - 2xXeon E5-2670
10704 1,0E405 1,0E+06 1,0E407 1,0E+08
Domain size
Figure 12. Performance results — test 1 and test 2.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957

DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 953

Table X. Comparison of the computational intensity.

Routine name

Version precon prforce divrhs laplc GCR
of operations 18 27 15 33 297
Unoptimized GPU # of bytes 255 289 170 604 4329
QunGPU 0.07 0.09 0.09 0.05 0.07
of operations 22 27 17 32 291
Optimized GPU # of bytes 167 154 113 242 2443
QoGPU 0.132 0.175 0.150 0.132 0.119
QocrPU/Quncru [%] 187 188 171 242 174

efficiently. The GPU code achieves 72% of the theoretical performance for test 1, and up to 86%
for test 2. The theoretical performance is defined as the product of the computational intensity and
measured global memory bandwidth. The theoretical performance corresponds to the ideal situation
in which data transfers and computations perfectly overlap. This occurs only if there are no memory
latency effects, and when the bandwidth of the global memory is completely saturated.

Table X compares the computational intensity Q for the main routines of the elliptic solver, for
both the unoptimized and optimized GPU codes. The optimized GPU implementation has a factor
of 1.7 higher computational intensity than the unoptimized one. Thus, the number of required bytes
of data per grid element is significantly reduced.

6. SYNERGY BETWEEN EULAG COMPONENTS

The previously described MPDATA and GCR solver algorithms are implemented in the C/C++
language, while the original EULAG code is developed in the FORTRAN 77 language. Several
steps are performed to merge all the implementations. In the main EULAG loop, the MPDATA and
GCR routines are called in each time step. Therefore, the wrapper routines are added to call the C
routines from the FORTRAN 77 code. As FORTRAN variables, including characters and integer
values, are passed by reference, they must be carefully handled. A FORTRAN subroutine call has
to explicitly pass the common block variables. Another important aspect is the difference in the
indexing syntax of arrays. In FORTRAN, the array index that represents elements in contiguous
memory regions is written first, so we have array(i, j, k), whereas in C, this index is written last
array[k][j][i]. Our C implementation treats 3D FORTRAN arrays as one-dimensional arrays. The
array elements are accessed with array[i + j % n + k % n %« m] syntax, where n and m are the array
dimensions. The memory order in C is the same as in FORTRAN, to avoid the cost related to the
data transposition.

The host compilers are used to compile the FORTRAN and C routines, whereas for the GPU code,
the CUDA compiler is utilized. To link the obtained object files, the C routines that are called from
FORTRAN have to be compatible with the FORTRAN naming convention. For instance, the C rou-
tine has to be declared as gcrk_(), and called from FORTRAN as call gcrk(). This is performed
in header file in C by the macro definition that change the routine name.

7. 3D INCOMPRESSIBLE TURBULENT FLOW: VALIDATION TEST CASE

The new GPU implementation of the GCR solver is validated using a standard benchmark test case
for incompressible flow solvers. We simulate decaying turbulence of a homogeneous incompressible
fluid. Here, only the simplified setup proposed by Taylor and Green [36] is considered. This problem
was originally used to illustrate processes of grinding down of large eddies into smaller ones. The
initial conditions for the velocity are slightly modified compared to the original work [36], namely

u = sin(ax)cos(by)cos(cz)
v = cos(ax)sin(by)cos(cz) 3)
w = sin(ax)cos(by)

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

954 K. A. ROJEK ET AL.

1.0

0.5

0.0

-0.5

i)

10 Y {5y
1.0 -1.0 -0.5 0.0 0.5 1.0

x/n x/m
Figure 13. Time evolution of the vertical component of velocity, displayed in the bottom (z = —) hori-

zontal cross section through the domain. Black lines correspond to simulations with standard CPU version
of EULAG. Red contours represent solution from the new GPU implementation. The dashed lines indicate
negative values.

Figure 14. Isosurfaces of vorticity magnitude from simulation at grid 1283. On the left side are results from

simulations performed with the traditional (CPU) version of EULAG. On the right side are results from the

new GPU implementation. The top panels present the flow after 200 time steps. The two bottom panels show
the vorticity field after 400 time steps.

where a = 2/(n —)dx, b = 2/(m — 1)dy, and ¢ = 2/(k — 1)dz. Here m, n, and k are inte-
gers, whereas dx, dy, and dz are grid spacings in the corresponding directions. Our computational
domain is a triply-periodic cube of length 2. Grid points are uniformly distributed in each spatial
direction. The size of the computational grid is 1283. There is no external forcing so the flow is
driven by the turbulent energy cascade.

We compare results from simulations performed with two versions of EULAG. The first simula-
tion has been performed using the traditional CPU architecture and the standard version of EULAG.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

85U801 7 SUOWILLOD 3AIERID 3|edldde 3y Aq pauienob e ssjoie O ‘88N JOSs|nJ 10} Akeiq8UIIUO AB|1M UO (SUORIPUOD-pUR-SLLLBILI0 A3 1M AReiq 1 [euUo//SARU) SUORIPUOD PUe SWi L 38U} 88S *[£202/T0/50] Uo Aiqiauliuo ABjIM O AISRAIIN BMOY0IS8ZD AQ LTHE d0/200T 0T/10p/W0d A8 | M AReiq U0/ Sdny Wwoiy papeojumod ‘v ‘STOZ ‘vE90ZEST

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 955

Table XI. Quantitative comparison between simulations performed with
CPU and GPU. The table shows L1 and L2, L, norms computed for
the vorticity fields after 200 and 400 time steps.

Ly Ly Lo

T = 200 dt 257.92x1072 0.3586x10¢ 0.0730x10~14
T = 400 dt 587.13x107° 2.4420x107° 2.5093x10~14

GPU, graphics processing unit.

To perform the second simulation, we used the new GPU implementation of the GCR solver, and the
graphic card NVIDIA Kepler K40m. First, we compare the 2D velocity flow field obtained in both
simulations. Figure 13 shows the vertical component of velocity in the bottom horizontal tile. There
is a good agreement between solutions computed with the standard version of EULAG and the new
GPU implementation. The black and red lines precisely overlap. To compare the results from simu-
lations in the entire domain, the 3D visualization of the vorticity flow field has been prepared. The
results are shown in Figure 14. Again, we confirm a good agreement between simulations performed
using two different hardware platforms.

To quantify the difference between simulations performed with CPU and GPU, the L;, L,, and
L norms of vorticity magnitude (Jw|) have been computed. The norms are defined as

N
1
Lilo) = {55 2 o,y 207 = o, yj, 20"V @)
i,jde=1
v 0.5
1 2
Ly(lw) = N3 > oy 2PV = o,y 20 P Y] &)
i,jh=1
1
Loo(lw]) = {m | max llo(xi. yi.zi) PV | - |a)(xi,yj,Zk)GPU||} (6)

where i, j, and k are the grid indices.

Table XI shows values of these norms computed for the || fields after 200 and 400 time steps. We
conclude that the values are rather small. Comparing the L values to the mean vorticity (~ 4x 1073
at T=200 dt), we find that the differences between GPU and CPU implementations are four orders
of magnitude smaller then the average |w|. As expected, because of round-off errors, resulting from
using different architectures, the values of the norms increase with time. However, with respect to
the average values of vorticity, the norms remain almost constant.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we reported on our efforts in adapting the multiscale model EULAG to modern GPU-
based architectures. A performance model of the CFD code EULAG is proposed to analyze the
hierarchy of communications at registers, shared, and global memories. The bottlenecks of the algo-
rithm are identified. The two main modules of EULAG, namely the advection algorithm MPDATA
and iterative elliptic pressure solver GCR, have been redesigned, and the new organization of com-
putations has been implemented. It is shown that the GPU utilization is mostly limited by the number
of memory transactions and latency of arithmetic operations. The GPU tuning of MPDATA (stencil
optimization) is based on the experimental tuning of ‘the best’ number of kernels and CUDA block
sizes for each kernel.

The new implementation performs better than the conventional CPU code, and can take advan-
tage of modern heterogeneous architectures. The scalability tests were performed using the NVIDIA
Tesla K40m graphic card. It was found that the speedup grows with the domain size as the kernels
can utilize GPU resources more efficiently. Based on the analysis of GPU implementation of the

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

956 K. A. ROJEK ET AL.

EULAG model, we can conclude that the GPU utilization is mostly limited by the number of mem-
ory transactions and latency of arithmetic operations. The proposed methods allow for estimating
‘the best” number of kernels, as well as easy selection of CUDA block sizes for each kernel.

The analysis of GPU global memory transactions allows us to minimize data transfers from/to the
GPU global memory. The proposed approach to kernel processing with queues of data chunks placed
in registers and shared memory increases the data locality significantly. The achieved performance
results show that the GPU implementation is profitable for mesh sizes greater or equal 64 x 64 x 16,
because smaller grids weakly utilize the GPU resources.

The developed GPU version of the GCR solver improves the computational intensity Q from 0.05
to 0.132. Two test problems (test 1 and test 2) are run to demonstrate the achieved speedup. It is
observed that the GPU implementation is about four times faster than the CPU one. The GPU code
reaches 72% of the theoretical performance for test 1 and 86% for test 2.

Adaptation of the EULAG model to modern architectures is still under development. The future
work will focus on expansion of the implementation across a cluster of CPU-GPU nodes. An impor-
tant aspect of future research is providing the full synergy between the MPDATA algorithm and
elliptic solver GCR. The particular attention will be paid to implementation of EULAG using the
OpenCL [37] standard to provide the code portability across different platforms.

Porting the multiscale model EULAG to modern architectures opens bright prospects for a fur-
ther progress in fundamental research, and in applied fields that are closely related to the CFD. It is
expected that the improved performance will enable us to reproduce more faithfully meteorological
processes occurring in the real atmosphere. The new developments will allow for performing simu-
lations in a larger domain, and thereby extends the range of scales what in turn may result in a more
reliable operational weather forecast.

ACKNOWLEDGEMENT

This work was supported by the Polish National Science Center under grant no. UMO-
2011/03/B/ST6 /03500 and by the project ‘Towards peta-scale NWP for Europe’ realized within
the Homing Plus programme of Foundation for Polish Science, co-financed from European Union,
Regional Development Fund.

The authors are grateful to Czestochowa University of Technology, Poznan Supercomputing and
Networking Center, and MEGWARE Computer Vertrieb und Service GmbH, for granting access to
hybrid CPU-GPU platforms.

REFERENCES

1. Skamarock WC. Evaluating mesoscale NWP models using kinetic energy spectra. Monthly Weather Review 2004;
132:3019-3032.

2. Wyrzykowski R, Szustak L, Rojek K. Parallelization of 2D MPDATA EULAG algorithm on hybrid architectures with
GPU accelerators. Parallel Computing 2014; 40:425-447.

3. Vuduc R, Chandramowlishwaran A, Choi J, Guney M, Shringarpure A. On the limits of GPU acceleration. HotPar10:
Proceedings of the 2nd USENIX Conference on Hot Topics in Parallelism. USENIX Association, Berkeley, CA,
2010; 13.

4. Unat D, Cai X, Baden SB. Mint: realizing CUDA performance in 3D stencil methods with annotated C. ICS '11
Proceedings of the International Conference on Supercomputing, Tucson, Arizona, USA, 2011; 214-224.

5. The Consortium for Small-scale Modeling. (Available from: http://www.cosmo-model.org) [Accessed on 1 August
2014].

6. Prusa JM, Smolarkiewicz PK, Wyszogrodzki AA. EULAG, a computational model for multiscale flows. Computers
& Fluids 2008; 37:1193-1207.

7. Smolarkiewicz PK, Kuhnlein C, Wedi NP. A consistent framework for discrete integrations of soundproof and
compressible PDEs of atmospheric dynamics. Journal of Computational Physics 2014; 263:185-205.

8. Smolarkiewicz PK. Multidimensional positive definite advection transport algorithm: an overview. International
Journal for Numerical Methods in Fluids 2006; 50:1123-1144.

9. Smolarkiewicz PK, Szmelter J. A nonhydrostatic unstructured-mesh soundproof model for simulation of internal
gravity waves. Acta Geophysica 2011; 59:1109-1134.

10. Schafer A, Fey D. High performance stencil code algorithms for GPGPUs. Computer Science 2011; 4:2027-2036.
11. Krotkiewski M, Dabrowski M. Efficient 3D stencil computations using CUDA. Parallel Computing 2013; 39:
533-548.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957
DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

http://www. cosmo-model. org

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

ADAPTATION OF FLUID MODEL EULAG TO GPU ARCHITECTURE 957

Kamil S, Husbands P, Oliker L, Shalf J, Yelick K. Impact of modern memory subsystems on cache optimizations for
stencil computations. Proceedings of the 2005 Workshop on Memory System Performance, Chicago, IL, USA, 2005;
36-43.

Datta K, Kamil S, Williams S, Oliker L, Shalf J, Yelick K. Optimization and performance modeling of stencil
computations on modern microprocessors. STAM 2009; 51:129-159.

Rivera G, Tseng CW. Tiling optimizations for 3D scientific computations. SC’00 Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing, Dallas, Texas, USA, 2000; 32.

Treibig J, Wellein G, Hager G. Efficient multicore-aware parallelization strategies for iterative stencil computations.
Journal of Computational Science 2011; 2:130-137.

Szustak L, Rojek K, Gepner P. Using Intel Xeon Phi coprocessor to accelerate computations in MPDATA algorithm.
Proceedings of the PPAM 2013 Conference Lecture Notes in Computer Sciences, Warsaw, Poland, 2013; 582-592.
Hager A, Wellein G. Introduction to high performance computing for science and engineers. CRC Press: Boca Raton,
Florida, USA, 2011.

Ciznicki M, Kopta P, Kulczewski M, Kurowski K, Gepner G. Elliptic solver performance evaluation on modern
hardware architectures. Proceedings of the PPAM 2013 Conference Lecture Notes in Computer Sciences, Warsaw,
Poland, 2013; 155-165.

. Rojek K, Szustak L. Parallelization of EULAG Model on multicore architectures with GPU accelerators. Lecture

Notes in Computer Science 2012; 7204:391-400.

Wyrzykowski R, Rojek K, Szustak L. Using Blue Gene/P and GPUs to accelerate computations in the EULAG model.
Lecture Notes in Computer Science 2012; 7116:662—670.

Wyrzykowski R, Szustak L, Rojek K, Tomas A. Towards efficient decomposition and parallelization of MPDATA
on hybrid CPU-GPU cluster. Proceedings of the LSSC 2013 Conference Lecture Notes in Computer Sciences, Sofia,
Bulgaria, 2013; 457-464.

De la Cruz R, Araya-Polo M, Cela JM. Introducing the semi-stencil algorithm. Springer Berlin Heidelberg, 2010.
Datta K, Murphy M, Volkov V, Williams S, Carter J, Oliker L, Patterson D, Shalf J, Yelick K. Stencil computa-
tion optimization and auto-tuning on state-of-the-art multicore architectures. SC’08 Int. Conf. on High Performance
Computing, Networking, Storage and Analysis, Austion, USA, 2008; 1-12.

Venkatasubramanian S, Vuduc R. Tuned and wildly asynchronous stencil kernels for hybrid CPU/GPU systems.
ICS’09 Proceedings of the 23rd International Conference on Supercomputing, Yorktown Heights, NY, USA, 2009;
244-255.

Nguyen A, Satish N, Chhugani J, Changkyu K, Dubey P. 3.5-D blocking optimization for stencil computations
on modern CPUs and GPUs. Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society, New Orleans, USA, 2010; 1-13.

Kurowski K, Kulczewski M, Dobski M. Parallel and GPU based strategies for selected CFD and climate modeling
models. Environmental Science and Engineering 2011; 3:735-747.

Cecilia JM, Garcia JM, Ujaldon M. CUDA 2D stencil computations for the Jacobi method. Lecture Notes in Computer
Science 2012; 7133:173-183.

NVIDIA Kepler Compute Architecture. (Available from: http://www.nvidia.com/object/nvidia-kepler.html)
[Accessed on 1 August 2014].

Best practices guide: CUDA toolkit documentation. (Available from: http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide) [Accessed on 1 August 2014].

Duguet F. Kepler vs Xeon Phi: our benchmark [source code included], 2013. (Available from: http://www.
hpcmagazine.eu/hpc-labs/kepler-vs-xeon-phi-our-benchmark-source-code-included/).

Wyrzykowski R, Rojek K, Szustak L. Performance analysis for stencil based 3D MPDATA algorithm on GPU
architecture. Lecture Notes in Computer Science (in print);.

Strikwerda J. Finite difference schemes and partial differential equations. Society for Industrial and Applied
Mathematics 2004; ch. 3.5.:88-91.

Williams S, Waterman A, Patterson D. Roofline: an insightful visual performance model for multicore architectures.
Communications of the ACM 2013; 52(4):65-76.

Wyszogrodzki AA, Piotrowski ZP, Grabowski WW. Parallel implementation and scalability of cloud resolving
EULAG model. Lecture Notes in Computer Science 2012; 7204:252-261.

Piotrowski ZP, Wyszogrodzki AA, Smolarkiewicz PK. Towards petascale simulation of atmospheric circulations
with soundproof equations. Acta Geophysica 2011; 59:1294-311.

Taylor G, Green A. Mechanism of the production of small eddies from large ones. Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences, Vol. 158, 1937; 499-521.

Munshi A, Gaster BR, Mattson TG, Fung J, Ginsburg D. OpenCL - Programming Guide. Addison-Wesley, 2011.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:937-957

DOI: 10.1002/cpe

3SUBD | SUOWILLIOD) aAIRaID a|cedt|dde ay) Aq pautenob afe sajoie YO ‘9sn JO Sa|nJ 10} AkeiqiauluQ A3]1AA UO (SUOIPUOD-pUR-SLLLIBIWOD" AS 1M AReq 1)U UO//:SANY) SUOIPUOD pUe SWB | 8Y) 39S [£202/T0/S0] Uo ARiqiaunuo AB|IM ‘O AsBAIUN eMoYo01ssz) Ag / Tie9dd/200T OT/I0p/Wo0 A | 1M Afeiqipuljuo//sdny wolj pepeojumod ‘v ‘STOZ ‘YE902EST

http://www.nvidia.com/object/nvidia-kepler.html
http://docs. nvidia. com/cuda/cuda-c-best-practices-guide
http://docs. nvidia. com/cuda/cuda-c-best-practices-guide
http://www.hpcmagazine.eu/hpc-labs/kepler-vs-xeon-phi- our-benchmark-source-code-included/
http://www.hpcmagazine.eu/hpc-labs/kepler-vs-xeon-phi- our-benchmark-source-code-included/

	Adaptation of fluid model EULAG to graphics processing unit architecture
	Summary
	INTRODUCTION
	RELATED WORKS
	GPU ARCHITECTURE AND PROGRAMMING ENVIRONMENT
	ADAPTATION OF ADVECTION TRANSPORT ALGORITHM MPDATA TO GPU ARCHITECTURE
	Processing GPU kernels
	Analysis of 3D MPDATA with NVIDIA visual profiler
	Performance analysis based on GPU global memory transactions
	Performance results for MPDATA algorithm

	ADAPTATION OF ELLIPTIC SOLVER COMPUTATION TO GPU ARCHITECTURE
	Main objectives
	Preliminary analysis of numerical performance
	Preconditioner optimization
	Stencil optimization
	Testing performance

	SYNERGY BETWEEN EULAG COMPONENTS
	3D INCOMPRESSIBLE TURBULENT FLOW: VALIDATION TEST CASE
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

