
Original Article

Porting and optimization of
solidification application for CPU–MIC
hybrid platforms

Lukasz Szustak, Kamil Halbiniak, Lukasz Kuczynski,
Joanna Wrobel and Adam Kulawik

Abstract
Modern heterogeneous computing platforms have become powerful HPC solutions, which could be applied to a wide
range of real-life applications. In particular, the hybrid platforms equipped with Intel Xeon Phi coprocessors offer the
advantages of massively parallel computing, while supporting practically the same parallel programming model as conven-
tional homogeneous solutions. However, there is still an open issue as to how scientific applications can efficiently utilize
hybrid platforms with Intel MIC coprocessors. In this article, we propose an approach for porting a real-life scientific
application to such hybrid platforms, assuming no significant modifications of the application code. It allows us to take
advantage of all the computing components, including two CPUs and two coprocessors, for the parallel execution of
computational workloads. In this study, we focus on the parallel implementation of a numerical model of the dendritic
solidification process in isothermal conditions. We develop a sequence of steps that are necessary for the porting and
optimization of the solidification application to hybrid platforms with Intel coprocessors. The main challenges include
not only overlapping data movements with computations, but also ensuring adequate utilization of cores/threads and
vector units of processors, as well as coprocessors. To reach this aim, we propose an efficient and flexible method for
the workload distribution between heterogeneous computing components. For implementing the potential benefits of
the proposed approach, we choose a heterogeneous programming model based on a combination of the offload mode
for Intel MIC and OpenMP programming standard. The developed approach allows us to execute the whole application
up to 9.333 faster than the original parallel version that uses two CPUs. Furthermore, the CPU–MIC hybrid platforms
enable achieving the speedup of about 1.93 that of the CPU platform with 24 cores based on the Ivy Bridge architec-
ture, and about 1.53 that of the Haswell-based CPU platform with 36 cores.

Keywords
Code optimization, heterogeneous programming model, hybrid architecture, Intel Xeon Phi, load balancing, numerical
modeling of solidification, offload, OpenMP, partitioning, vectorization

1 Introduction

In recent years, it has become evident (Kurzak et al.,
2011; Wyrzykowski et al., 2014a) that future designs of
microprocessors and HPC systems will be hybrid and
heterogeneous in nature. An example of this trend is
hybrid platform equipped with the Intel Xeon Phi
coprocessors (Parallel Programming, 2013; MICLAB,
2015) or GPU accelerators (Wyrzykowski et al., 2014a).
These heterogeneous solutions rely on the integration
of two major types of components in various propor-
tions to speed up computation intensive applications:
(a) multicore CPU technology and (b) special-purpose
hardware and massively parallel accelerators.

The Intel Xeon Phi coprocessor (Parallel
Programming, 2013; Intel Corporation, 2013) is the

first product based on the Intel Many Integrated Core
(Intel MIC) architecture. It includes a large number of
cores with wide vector processing units, and supports
practically the same parallel programming model as
conventional homogeneous solutions based on CPUs.
Although this architecture is designed for massively
parallel applications, there is still an open issue how

Insitute of Computer and Information Science, Czestochowa University

of Technology, Poland

Corresponding author:

Lukasz Szustak, Czestochowa University of Technology, Dabrowskiego

69, 42-201 Czestochowa, Poland.

Email: lszustak@icis.pcz.pl

Special Issue Paper

The International Journal of High
Performance Computing Applications
2018, Vol. 32(4) 523–539
ª The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342016677740
journals.sagepub.com/home/hpc

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/1094342016677740
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342016677740&domain=pdf&date_stamp=2016-12-23

scientific applications can efficiently utilize all compo-
nents of CPU–MIC hybrid platforms.

In this study, we present an example of solving this
problem by developing an approach for porting a real-
life scientific application to such platforms. We focus
on the parallel implementation of a numerical model of
the dendritic solidification process in isothermal condi-
tions (Adrian and Spiradek-Hahn, 2009; Warren and
Boettinger, 1995). In this model, the growth of the
microstructure during the solidification process is deter-
mined by solving a system of two partial differential
equations (PDEs). These equations define the phase
content, and concentration of components in an alloy.
The solution of PDEs is obtained using the meshless
finite difference method (with 2D geometry), and an
explicit scheme of calculations.

In our previous work (Szustak et al., 2016), we devel-
oped an approach for porting and optimizing an appli-
cation for modeling alloy solidification on computing
platforms with a single Intel Xeon Phi accelerator. That
work presented a sequence of steps required for porting
the main workloads of the application to the Intel Xeon
Phi coprocessor. In this study, the coprocessor was used
to perform the major parallel workloads, while the
CPU was responsible for writing partial results to a file.
Additionally, the CPU executed the part of the applica-
tion that does not require massively parallel resources.
The proposed approach allowed us to overlap (a) writ-
ing data to the file on the CPU side, (b) computations
on the coprocessor side and (c) data transfers between
the coprocessor and CPU. In consequence, the opti-
mized version of the code was 3.453 faster than the
original parallel version.

In this article, we propose a new approach that
allows us to accelerate the solidification application by
efficiently using all the available computing resources
of hybrid platforms equipped with Intel Xeon CPUs
and Intel Xeon Phi coprocessors. In the proposed
approach, both CPUs and coprocessors are responsible
for performing the major parallel workloads to provide
the best utilization of computing resources. To reach
this aim, we develop a sequence of steps required for
porting the application to hybrid platforms with accel-
erators, assuming no significant modifications of the
code. The main challenges include not only overlapping
data movements with computations, but also ensuring
an adequate utilization of cores/threads and vector
units of CPUs as well as coprocessors. In order to uti-
lize all the components of hybrid platforms, we propose
an efficient and flexible method for workload distribu-
tion between two CPUs and two coprocessors. For
implementing the potential benefits of the proposed
approach, we choose the heterogeneous programming
model based on a combination of the offload model for
the Intel MIC and the OpenMP programming
standard.

To summarize, our article makes the following
contributions.

1. An approach for porting the real-life scientific
application to hybrid platforms with Intel MIC
coprocessors, without significant modification of
the program code, is proposed. It allows us to
accelerate the original parallel code by taking
advantage of all the computing devices, including
CPUs and coprocessors, for the parallel execution
of computational workloads.

2. The following optimizations are developed to
accelerate the application: (a) optimization of data
transfers between devices, and overlapping data
movements with computations; (b) efficient work-
load distribution between available devices; (c)
even distribution of workloads across cores/
threads within devices, as well as optimization of
partitioning CPU threads between work teams; (d)
increased performance of vector processing by
combining automatic vectorization and slight
modifications of the code.

3. An experimental evaluation of the numerical accu-
racy of the developed approach is provided, taking
into account differences in the architecture of Intel
coprocessors compared to Intel Xeon CPUs. This
evaluation shows that the simulation results for
the developed and original codes differ negligibly.
These differences are not cumulative, and they do
not grow during the simulation.

4. Using the heterogeneous programming model, the
developed implementation of the proposed
approach allows us to execute the whole applica-
tion up to 9.333 faster than the original parallel
CPU code. Moreover, the CPU–MIC hybrid
implementation achieves the speedup of about
1.93 against two Ivy Bridge-based CPUs with 24
cores, and about 1.53 against the Haswell-based
CPUs with 36 cores.

This article is organized as follows. Section 2 pre-
sents related work, while Section 3 outlines hybrid plat-
forms equipped with Intel Xeon Phi coprocessors,
including the platforms used in our experiments.
Section 4 introduces the numerical model of solidifica-
tion, which is based on the generalized finite difference
method. Section 5 describes the idea of the adaptation
of the solidification application to hybrid platforms,
while Section 6 outlines a sequence of steps required
for porting the application to CPU–MIC platforms,
following the idea proposed in Section 5. Section 7 pre-
sents the evaluation of the proposed approach taking
into account the numerical accuracy of computations
performed in the heterogeneous environment. Section 8
shows performance results achieved by the proposed
approach, while Section 9 concludes the article.

524 The International Journal of High Performance Computing Applications 32(4)

2 Related work

In order to reach the desired high computational power
with low energy usage, many HPC systems are
equipped not only with standard CPUs, but also accel-
erators. Three of the TOP500’s top 10 sites for June
2016 exploit GPUs or Xeon Phi coprocessors, including
the Tianhe-2 supercomputer which is ranked in second
place (see http://top500.org). This machine contains a
mixture of Intel Xeon E5-2692v2 and Intel Xeon Phi
31S1P devices.

The Intel MIC architecture is a relatively fresh com-
puting platform; however, many researchers have been
investigating this product in order to accelerate their
applications. An exhaustive collection of such investi-
gations is included in the Intel Xeon Phi Applications
and Solutions catalogue (Liviero, 2015). Exploring a
wide variety of HPC systems such as supercomputing
systems based on multi- and many-core solutions is
necessary to meet the challenges of modern science and
technology.

Current investigations of porting existing parallel
codes to Intel Xeon Phi coprocessors reveal many suc-
cesses in optimizing specific computing kernels, and
improving the performance in comparison with unopti-
mized versions (Szustak, Rojek, Wyrzykowski, et al.,
2014; Szustak et al., 2016). A common conclusion is
that the major performance improvements are usually
noticeable for a single coprocessor when comparing a
new optimized version versus an original parallel code
for CPUs (e.g. Szustak et al., 2015, 2016). However,
the improvements delivered for coprocessors are com-
monly suitable for CPUs as well (Szustak et al., 2015;
Vladimirov, 2015). In consequence, the overall perfor-
mance for a coprocessor is similar or even lower when
compared to a single node with two Intel Xeon CPUs
(Liu and Deng, 2015). Such a situation is not surprising
taking into account recent improvements of processor
architecture (Intel Corporation, 2015), and reported
difficulties in achieving high performance on coproces-
sors (Liu et al., 2014; Liu and Deng, 2015; Vladimirov,
2015). At the same time, the usage of Intel Xeon Phi
coprocessors has allowed the Tianhe-2 supercomputer
to achieve petascale performance in earthquake model-
ing simulation (Heinecke et al., 2014).

The ability to fully exploit modern heterogeneous
HPC systems becomes vital for achieving an optimal
overall performance. An example of research in this
direction is the methodology proposed in our previous
works (Wyrzykowski et al., 2014a,b) for a stencil-based
algorithm. It enabled us to efficiently utilize available
resources by spreading computations across the entire
CPU+GPU hybrid platforms. A new level of hetero-
geneous concurrent execution of a Monte Carlo photon
transport simulation was presented by Wolfe et al.
(2014). This simulation was extended to execute on any
combination of CPUs, GPUs and MICs concurrently.

The proposed approach allows each device to repeat-
edly grab portions of the domain, and compute concur-
rently until the entire domain has been simulated. A
speedup of 133 was observed when utilizing Intel
Xeon X5650 CPU and Intel Xeon Phi 5110P coproces-
sors and an NVIDIA K40 GPU concurrently versus
just the Intel Xeon CPU. Mapping parallel graph pro-
cessing applications on a node with Intel Xeon Phi
accelerators is a challenge considered by Chen et al.
(2015). For this aim, the authors developed a specia-
lized API for expressing SIMD parallelism, supported
by efficient techniques, focusing on exploiting wide
SIMD lanes, a massive number of cores, and partition-
ing of the work across CPUs and accelerators. The
resulting heterogeneous CPU–MIC execution achieved
a speedup of up to 1.413 that of the CPU-only and
MIC-only executions. At the same time, this solution
required a deep interference in the basic code, while in
our case we assume no significant modifications of the
code.

The phase-field method is a powerful tool for sol-
ving interfacial problems in materials science
(Steinbach, 2009). It has mainly been applied to soli-
dification dynamics (Provatas and Elder, 2010), but it
has also been used for other phenomena such as vis-
cous fingering (Folch et al., 1999), fracture dynamics
(Karma et al., 2001) and vesicle dynamics (Steinbach,
2009). The number of scientific papers related to the
phase-field method exponentially increases from 1990
after Kobayashi’s successful dendrite growth phase-
field simulation, reaching about 400 positions in 2012
(according to the SCOPUS database) (Takaki, 2014).

In the initial period, calculations were carried out
for single dendrites in 2D space. However, recent arti-
cles have described modeling a complex dendritic soli-
dification with many grains, for the 3D space. One of
the reasons for such progress is the fast growth of com-
puting power. A convincing example of this trend is the
peta-scale phase-field simulation of dendritic solidifica-
tion performed on the TSUBAME2.0 supercomputer
equipped with GPU accelerators (Shimokawabe et al.,
2011). Therefore, the presented research is a part of the
worldwide tendency to use modern computing
machines for modeling the phase-field phenomena.
There are many papers devoted to modeling the dendri-
tic growth that use approaches such as cellular auto-
mata, the finite element method and the finite
difference method (Adrian and SpiradekHahn, 2009;
Choudhury et al., 2012; Zaeem et al., 2013). In this
respect, the important contribution of this study is the
utilization of the generalized finite difference method
(GFDM). In particular, it allows us to model phenom-
ena where the distribution of nodes in grids is
diversified—concentrated in border areas of the inter-
phase, and sparse in areas with a low diffusivity or
already solidified. For such grids, it is not possible to

Szustak et al. 525

use methods which require regular grids, as for example
does the classic finite difference method.

3 Hybrid platforms overview

This section presents an overview of the hybrid plat-
forms equipped with conventional Intel Xeon CPUs
and Intel Xeon Phi coprocessors. In particular, we out-
line the architecture of this platform, as well as intro-
duce the programming model that allows for efficient
utilization of available resources.

3.1 Intel CPU–MIC heterogeneous architecture

The heterogeneous Intel CPU–MIC architecture inte-
grates in various proportions two major types of com-
ponents (Colfax International, 2015; IT4Innovations,
2015): (a) general-purpose Intel processors and (b) mas-
sively parallel Intel Xeon Phi coprocessors. The HPC
servers based on this architecture come in a variety of
configurations to address diverse hardware, software,
workload, performance and efficiency requirements.
They also come in a variety of form factors, including
even a very dense form factor that offers up to eight
coprocessors per each server (Colfax International,
2015). However, a typical hybrid platform contains
usually two Intel Xeon CPUs as well as one or two
Intel Xeon Phi coprocessors (MICLAB, 2015;
IT4Innovations, 2015).

An example of the heterogeneous Intel CPU–MIC
platform is presented in Figure 1. The CPU processors
are connected via the QuickPath Interconnect bus with
ccNUMA capabilities (Intel Corporation, 2013;
Parallel Programming, 2013). The Intel Xeon Phi
coprocessors are delivered in form factor of a PCIe
additional device, and do not provide a direct access to
the main memory system of the server. This leads to

the requirement of exchanging data through the PCIe
bus between CPUs and coprocessors.

3.2 Intel Xeon Phi coprocessor overview

The Intel Xeon Phi coprocessor is the first product
based on the Intel MIC Architecture. It targets a vari-
ety of HPC segments (Parallel Programming, 2013;
MICLAB, 2015; Xue et al., 2015) such as scientific
research, physics, chemistry, biology, and climate simu-
lation (Szustak, Rojek and Gepner, 2014; Szustak et
al., 2015; Xue et al., 2015).

The coprocessor contains more than 50 cores,
caches, memory controllers, and PCIe client logic (Intel
Corporation, 2013; Rahman, 2013; Jeffers and
Reinders, 2014). All these components are connected
together by the bidirectional ring interconnect. Cores
are clocked at about 1 GHz, and allow running up to
four hardware threads per each core. An integral part
of every core is the vector processing unit, that sup-
ports a new 512-bit SIMD instruction set called Intel
Initial Many-Core Instructions. Each core has 128 vec-
tor registers 512-bit wide, and comes complete with a
private L1 and L2 caches that are kept fully coherent
by the ring interconnect. The coprocessor has over 6
GB of own on-board GDDR5 main memory (maxi-
mum 16 GB). The access to the main memory is rea-
lized by six or eight memory controllers, that are evenly
distributed on the bidirectional bus.

The Intel Xeon Phi coprocessor provides a general-
purpose programming environment similar to that pro-
vided for Intel CPUs (Parallel Programming, 2013). It
supports the source-code portability between CPU and
coprocessor platforms, that gives the possibility to run
the same code using different devices: Intel CPU or
Intel MIC. Programmers can write their codes using the
most popular programming languages like C, C+ +
and Fortran. This architecture supports also traditional
parallel programming standards (Hager and Wellein,
2011) such as OpenMP, Intel Thread Building Blocks,
Intel Cilk Plus, C+ +11 threads and MPI.

3.3 Programming models for hybrid platforms

The main challenge in achieving the desired computa-
tional performance is taking advantage of collaboration
between CPUs and coprocessors. Generally speaking,
to meet this challenge Intel offers two programming
modes: MPI (or symmetric) mode and offload mode
(Intel Corporation, 2013; Parallel Programming, 2013).

The first mode allows for running applications on
CPUs and coprocessors using MPI, and then utilizing
the computing resources of every kind of device by
employing traditional multithreaded programming
standards (e.g. OpenMP). The second mode also guar-
antees utilization of all the available resources, butFigure 1. Heterogeneous CPU–MIC architecture.

526 The International Journal of High Performance Computing Applications 32(4)

requires a different methodology for achieving this
aim. In this mode, the programmer select code sections
to run on the Intel Xeon Phi. This mode assumes using
simple pragmas to specify code sections and data to be
offloaded to a target device. The application starts on
the CPU side, while selected regions are automatically
transferred and run on the target device. A parallel pro-
gramming standard such as OpenMP has to be addi-
tionally employed for utilizing the parallel computing
resources of the processors and/or coprocessors. If for
some reason, the coprocessor is unavailable, the code
regions are executed on the CPU side.

An important advantage of the offload mode is an
easy opportunity to avoid the overheads associated
with running non-parallel regions of applications on
the coprocessor side. In particular, massively parallel
regions can be performed simultaneously by CPUs and
processors, while sequential regions are executed by
CPUs only. Since the studied application includes both
sequential and massively parallel regions, we use a pro-
gramming model which is a combination of the offload
mode and the OpenMP programming standard. Such a
combination gives a strong basis for the efficient utili-
zation of CPUs and coprocessors by providing a flex-
ible workload distribution.

3.4 Target platforms

In this study, we use two hybrid platforms (MICLAB,
2015) equipped with CPUs and Intel Xeon Phi copro-
cessors. The first platform includes two Intel Xeon E5-
2699 v3 CPUs (Haswell EP architecture), two Intel
Xeon Phi 7120P coprocessors, and 256 GB of DDR4-
2133 main memory. Every CPUs consists of 18 cores

clocked at 2.3 GHz, while each coprocessor contains 61
cores clocked at 1.238 GHz with 16 GB of on-board
memory. The second platform includes two Intel Xeon
E5-2695 v2 CPUs (Ivy Bridge EP architecture), two
Intel Xeon Phi 7120P coprocessors, and 128 GB of
DDR3-1866 main memory. These processors contain
23 12 cores clocked at 2.4 GHz.

For double precision floating-point operations, the
theoretical peak performances of these two platforms
are 3741.4 (23 662:4+ 23 1208:3) Gflop/s and
2877.4 (23 230:4+ 23 1208:3) Gflop/s, respectively.
The presented values of the peak performance take
into account the usage of SIMD vectorization with
the vector size of 256 bits for CPU, and 512 bits for
coprocessor, respectively. Table 1 summarizes para-
meters of these platforms.

4 Introduction to numerical model of
solidification

In the numerical examples studied in this article, a bin-
ary alloy of Ni–Cu is considered as a system of the ideal
metal mixture in the liquid and solid phases. The
numerical model (Warren and Boettinger, 1995; Adrian
and Spiradek-Hahn, 2009) refers to the dendritic solidi-
fication process in the isothermal conditions with con-
stant diffusivity coefficients for the liquid and solid
phases. It allows us to use the field-phase model defined
by Warren and Boettinger (1995). In this model, the
growth of microstructure during the solidification pro-
cess is determined by solving a system of two PDEs
(Warren and Boettinger, 1995; Longinova et al., 2001;
Adrian and Spiradek-Hahn, 2009). The first equations
define the phase content f

Table 1. Specification of target platforms (MICLAB, 2015).

Device type First platform Second platform

CPUs Coprocessors CPUs Coprocessors

Number of devices 2 2 2 2
Name of each Intel Xeon Intel Xeon Intel Xeon Intel Xeon
device E5-2699 V3 Phi 7120P E5-2695 V2 Phi 7120P
Release date Q3 2014 Q2 2013 Q3 2013 Q2 2013
Number of cores 18 61 12 61
Number of threads 36 244 24 244
SIMD width (bits) 256 512 256 512
Frequency (GHz) 2.3 1.2 2.4 1.2
DP peak (Gflop/s) 662.4 1208.3 230.4 1208.3
LLC* size (MB) 45 30.5 30 30.5
Memory size (GB) 256 16 128 16
Memory bandwidth (GB/s) 68 352 59.7 352

*LLC (last level cache) refers to aggregated L2 caches for Intel Xeon Phi and L3 cache for CPU.

Szustak et al. 527

1

Mf

∂f

∂t
=e2 r� h2rf

� ��

+ hh
0
sin(2u)

∂2f

∂y2
�∂2f

∂x2

� �
+2cos(2u)

∂2f

∂x∂y

� �

� 1

2
h

02+hh
00

� �
�cos 2uð Þ ∂2f

∂y2
�∂2f

∂x2

� ��

+ 2sin 2uð Þ ∂
2f

∂x∂y
� ∂2f

∂x2
�∂2f

∂y2

� cHB� 1� cð ÞHA� cor ð1Þ

where: Mf is defined as the solid/liquid interface
mobility, e is a parameter related to the interface width,
h is the anisotropy factor, HA and HB denote the free
energy of both components and cor is the stochastic
factor which models thermodynamic fluctuations near
the dendrite tip. The coefficient u is calculated as
follows

u=
∂f

∂y
=
∂f

∂x
ð2Þ

The second equation defines the concentration c of
the alloy dopant, which is one of the components of the
alloy

∂c

∂t
=r � Dc

rc+
Vm

R
c 1� cð Þ HB f, Tð Þ � HA f, Tð Þð Þrf

	
 ð3Þ

where: Dc is the diffusion coefficient, Vm is the specific
volume, R is the gas constant. In this model, the
GFDM (Benito et al., 2008; Kulawik, 2013) is used
to obtain the values of partial derivatives, with respect
to dimensions x and y, that occur in equations (1)
and (2).

In order to parallelize computations with a desired
accuracy, the explicit scheme is applied with a small
value of the time step Dt= 1e� 7s

ft+1
i =ft

i+DtMfe
2 h2 ∂2ft

i

∂x2
+

∂2ft
i

∂y2

� �	

+ hh
0
sin(2u)

∂2ft
i

∂y2
�∂2ft

i

∂x2

� �
+2cos(2u)

∂2ft
i

∂x∂y

�

� 1

2
h

02+hh
00

� �
�cos(2u)

∂2ft
i

∂y2
�∂2ft

i

∂x2

� ��

+ 2sin(2u)
∂2ft

i

∂x∂y
� ∂2ft

i

∂x2
�∂2ft

i

∂y2

�

� cHB� 1�cð ÞHA�cor ð4Þ

ct+ 1
i = cti +Dt

∂Dc

∂x

∂cti
∂x

+
Vm

R
cti 1� cti
� �

HB � HAð Þ ∂f
∂x

	
�

+ Dc

∂2c

∂x2
+

Vm

R
1� 2cti
� � ∂cti

∂x
HB � HAð Þ ∂f

∂x

		

+ cti 1� cti
� � ∂ HB � HAð Þ

∂x

∂f

∂x

+ cti 1� cti
� �

HB � HAð Þ ∂
2f

∂x2

+
∂Dc

∂y

∂cti
∂y

+
Vm

R
cti 1� cti
� �

HB � HAð Þ ∂f
∂y

	

+ Dc

∂2cti
∂y2

+
Vm

R
1� 2cti
� � ∂cti

∂y
HB � HAð Þ ∂f

∂y

		

+ c 1� cti
� � ∂ HB � HAð Þ

∂y

∂f

∂y

+ cti 1� cti
� �

HB � HAð Þ ∂
2f

∂y2

�
ð5Þ

These computations belong to the group of forward-
in-time algorithms (Wyrzykowski et al., 2014a), as all
the calculations performed in the current time step
t+ 1 depend on results determined in the previous time
step t. The application code consists of two main blocks
of computations, which are responsible for determining
either the phase content f or the dopant concentration
c. In the model, the values of f and c are calculated for
nodes distributed across a considered domain. In equa-
tions (4) and (5), the values of derivatives in all the
nodes are determined at every time step of the calcula-
tions. All these computations are the main workload
for the resulting numerical algorithm.

The solutions of differential equations are obtained
on the basis of the meshless finite difference method
(for 2D geometry) and explicit scheme of calculations
(Benito et al., 2008). For approximating values of deri-
vatives in equations (4) and (5), we adopt the second-
order Taylor expansion. In this numerical scheme, to
provide the ‘‘best’’ approximation of derivatives in the
central node of the n-pointed star (see example shown
in Figure 2, where n= 12), the following condition is
used

D=
Pn

j= 1 Ti � Tj +(T , x)ihj +(T , y)ikj + 0:5(T , xx)ih
2
j

�

+ 0:5(T , yy)ik
2
j + 0:5(T , xy)ihjkj

�2
1
l2m
j

= 0

ð6Þ

where:
� variable T corresponds either to the phase con-

tent f or the dopant concentration c;
� lj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2j + k2j

q
is the distance between the jth

node (j= 1, 2, . . . , 12) and the central node cor-
responding to the index i;

528 The International Journal of High Performance Computing Applications 32(4)

� m is a coefficient which determines the influence
of the distance of each node on the values of
derivatives.

Assuming the coefficient m= 2, the usage of equa-
tion (6) allows us to express the searched derivatives by
the following formula

∂Ti

∂x
∂Ti

∂y

∂2Ti

∂x2

∂2Ti

∂y2

∂2Ti

∂y∂x

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

=

Pn
j= 1

h2j

l2m
j

Pn
j= 1

hjkj

l2m
j

Pn
j= 1

h3
j

2l2m
j

Pn
j= 1

hjk
2
j

2l2m
j

Pn
j= 1

h2j kj

l2m
j

Pn
j= 1

hjkj

l2m
j

Pn
j= 1

k2j

l2m
j

Pn
j= 1

h2j kj

2l2m
j

Pn
j= 1

k3
j

2l2m
j

Pn
j= 1

hjk
2
j

l2m
j

Pn
j= 1

h3
j

2l2m
j

Pn
j= 1

h2
j
kj

2h2m
j

Pn
j= 1

h4
j

4l2m
j

Pn
j= 1

h2
j
k2
j

4l2m
j

Pn
j= 1

h3
j
kj

2l2m
j

Pn
j= 1

hjk
2
j

2l2m
j

Pn
j= 1

k3
j

2h2m
j

Pn
j= 1

h2j k
2
j

4l2m
j

Pn
j= 1

k4j

4l2m
j

Pn
j= 1

hjk
3
j

2l2m
j

Pn
j= 1

h2
j
kj

l2m
j

Pn
j= 1

hjk
2
j

l2m
j

Pn
j= 1

h3
j
kj

2l2m
j

Pn
j= 1

hjk
3
j

2l2m
j

Pn
j= 1

h2
j
k2
j

l2m
j

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

�1

3

Pn
j= 1

hj

l2m
j

(Tj � Ti)

Pn
j= 1

kj

l2m
j

(Tj � Ti)

Pn
j= 1

h2j

2l2m
j

(Tj � Ti)

Pn
j= 1

k2j

2l2m
j

(Tj � Ti)

Pn
j= 1

hjkj

l2mj
(Tj � Ti)

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

,

ð7Þ

where h= hx, k= hy.
The presented approach, which is based on the

GFDM, allows for solving the partial differential equa-
tions both for regular and irregular grids. In the studied
application, a 2D regular grid is used with nodes dis-
tributed uniformly across a square domain, so we have
n= 8. To provide a required accuracy, 2000 nodes
along each dimension are chosen as sufficient.

At the same time, two cases should be distinguished
for this application. In the first case, computations are
performed in all the nodes. It is assumed that the values
of concentration of alloy component and phase content

could change in every node of the grid. For this case,
the workload of computational nodes (CPUs and
coprocessors) is constant during the application execu-
tion, since a constant number of equations has to be
solved. These assumptions correspond to modeling
problems in which the variability of the solidification
phenomenon in the whole domain has to be taken into
account. In the presented model, this occurs during the
growth of grains in the considered domain, or when
modeling the phase transformations in the solid state.

In the second case, the model is able to solve the dif-
ferential equations only in a part of the nodes. It is
assumed that the required computations are performed
only in the nodes in which the difference between values
for the nodes of a single star are non-zero (Figure 2).
The use of this selection criterion allows us to reduce
significantly the number of computations. At the same
time, the consequence is a significant workload imbal-
ance between computing devices during the application
execution, since the selection criterion is calculated after
the partitioning of nodes between coprocessors and
CPUs. In the initial stage of the grain growth, the dif-
ferential equations are solved only in a small area
around the condensation nuclei (this area is calculated
on CPUs entirely). At that time, coprocessors check
only if the selection criterion is satisfied.

5 Idea of adapting solidification application
to hybrid platforms with coprocessors

In this section, we introduce the idea of the adaptation
of the solidification application to a hybrid computing
platform equipped with CPUs and coprocessors, where
the emphasis is on platforms with two CPUs and two
Intel accelerators. The main goal of this study is to
accelerate computations by using all the available

Figure 2. Example of grid nodes used for calculation.

Szustak et al. 529

computing resources of target platforms. We propose
to execute the major parallel workloads on both CPUs
and coprocessors, while the rest of the application is
performed only by CPUs, as it does not require mas-
sively parallel resources. Such an approach allows us to
utilize computational resources efficiently, but requires
us to develop an efficient and flexible method for the
workload distribution between CPUs and coprocessors.
In consequence, the massively parallel regions that cor-
respond to equations (4), (5) and (7) are executed both
by CPUs and accelerators, while the other regions are
processed by CPUs only.

In the studied application, computations are inter-
leaved with writing partial results to a file. In the origi-
nal version, parallel computations are executed for
successive time steps, while writing results to the file is
performed after the first time step, and then after
executing every package of a selected number R of time
steps. Such a scheme allows for observing and evaluat-
ing the grain growth during the simulation with a
requested accuracy. The value of R= 2000 was selected
in the original version of the application. Figure 3 illus-
trates the execution of the computational core of the
studied application using CPUs only.

We propose using both CPUs and coprocessors to
execute all the operations associated with the computa-
tional core, while leaving writing data to the file as the
responsibility of CPUs only. A critical performance
challenge of the proposed approach is the overlapping
of all the computations with writing results to the file.
Since CPUs are responsible for both computations and
writing data to the file, we propose to partition CPU
threads into two work teams, and assign writing data
to one of them. More precisely, we assign a single CPU
thread to the second team (this thread is responsible
for writing data), while other CPU threads are assigned
to the first one. In consequence, this approach allows
us to simultaneously perform parallel computations
using all the available devices (CPUs and accelerators),
and writing data to the file.

The next challenge solved by our approach is related
to an efficient and flexible distribution of the workload
between all the available devices. For this aim, both the
computation and communication costs are taken into
account when ensuring load balancing between all the
devices. Also, we propose to overlap computations with
data movements as much as possible by scheduling

simultaneously computations and data transfers to/
from coprocessors, which is necessary to reduce the
overhead caused by data transfers. The basic idea of
adaptation of the solidification application to a hybrid
platform with Intel Xeon Phi coprocessors is shown in
Figure 4.

At the beginning of the computations, all the input
data are transferred simultaneously to the coproces-
sors. Then the coprocessors and the first CPU work
team starts computations for the first time step. After
finishing the workloads assigned to both coprocessors,
all the results are transferred back to the main memory.
During these transfers, the first CPU work team per-
forms computations for the first time step. The second
CPU work team starts writing results to the file imme-
diately after obtaining outcomes from the first CPU
work team, as well as from the coprocessors. At the
same time, the first CPU work team and the coproces-
sors start computations for the next package of time
steps. This scheme is repeated many times for every
package of R time steps.

Because of data dependencies in the studied applica-
tion, it is necessary to exchange data between CPUs
and coprocessors, between successive time steps. In par-
ticular, calculating a single output element by a device
in every time step requires some input data which have
been computed in other devices in the previous step.
This leads to the necessity of providing adequate data
transfers between CPUs and coprocessors, with the
exchange point located in the main memory of CPUs.

6 Porting application to hybrid platforms
with Intel Xeon Phi

This section presents a sequence of steps that are neces-
sary for the adaptation of the studied application to
hybrid platforms with Intel Xeon Phi coprocessors, fol-
lowing the idea proposed in the previous section.
Among the three challenges solved in this way, the first
one includes overlapping the following operations: (a)
writing data to the file, (b) computations on the CPU
and coprocessor sides and (c) data transfers between
coprocessors and CPUs. The second challenge concerns
an efficient and flexible distribution of workload
between all the devices, while the last challenge refers
to a maximum possible utilization of resources of
CPUs and coprocessors. At the same time, we assume

Figure 3. Timing diagram for the original version of solidification application.

530 The International Journal of High Performance Computing Applications 32(4)

no significant modifications of the code, especially for
the computing kernels. In this study, we do not provide
any improvements for writing data to the file.

6.1 Partitioning CPU threads between work teams

When porting the studied application to hybrid plat-
forms, one of the main steps is to overlap writing data
to the file with computations performed by available
devices. Since CPUs have to provide writing results to
the file, we propose to partition the CPU threads into
two work teams, where the second team, containing a
single thread, is responsible for writing partial results to
the file, while the main tasks of the first team are execu-
tion of calculations on CPUs and management of com-
putations for coprocessors. The details of these tasks
are presented in the next subsections.

To implement thread partitioning into two teams,
we use the nested parallelism offered by the OpenMP
programming standard (OpenMP, 2015). Using this
feature, two CPU threads are created first, and then
the first thread spawns new threads. When performing
this step, providing the thread affinity is important to
avoiding a situation where two or more threads run on
the same core. Currently the affinity is adjusted manu-
ally. The concept of thread partitioning into two work
teams is shown in Listing 1.

To overlap writing data with computations, it is
important to use the multiple buffering technique
(Wyrzykowski et al., 2012). In the proposed approach,
it is enough to apply two buffers on the CPU side that
are used alternatively for parallel computations and

writing data. When one buffer is used to write results
to the file, the second one is used to keep results of the
computations.

6.2 Partitioning and load balancing

The important step in porting our application is to pro-
vide for an optimal balancing of the workload between
the platform components. This requires a suitable par-
titioning of computations. A target platform is viewed
here as consisting of three components: (a) two CPUs
connected as a ccNUMA architecture, (b) the first
coprocessor (MIC0) and (c) the second coprocessor
(MIC1). In consequence, all the computations, which
are performed in the original algorithm to calculate
several arrays, will be partitioned into three parts in a

Figure 4. Timing diagrams illustrating the basic idea of adaptation of solidification application to hybrid platforms with Intel Xeon
Phi coprocessors.

Listing 1. Partitioning threads into two work teams.

Szustak et al. 531

proportion which takes into account performances of
the platform components.

Furthermore, to reduce overheads for data transfers
between the components we propose to assign the first
part of computations to MIC0, the second part to
CPUs and the last part to MIC1. Such an assignment
has a clear advantage in data transfer overheads over
the assignment of the adjacent parts of computations
to two coprocessors. In the latter case, the required
transfers take place for two communication paths: (a)
MIC0 $ CPU $ MIC1 and (b) CPU $ MIC1. In the
proposed case, the communication paths are shorter,
and correspond to: (a) MIC0 $ CPU and (b) CPU $
MIC1. This is because the exchange point is located in
the main memory of CPUs, and data transfers are nec-
essary only between the adjacent parts, for every time
step.

In order to ensure an optimal load balancing
between all the components, we propose to determine
the best workload distribution for a fixed problem size
in an empirical way. Initially, computations are parti-
tioned uniformly. Based on measurements of the execu-
tion time for each part, we perform a calibration of
distribution. The calibration process is finished when
the execution times for all the parts are the same, with a
given accuracy. In consequence, the static partitioning
is provided for successive executions of the application.

6.3 Parallelization of computations across threads

The previous optimization steps provide an efficient
distribution of computations across all the devices, and
overlapping computations with writing data to the file.
Now the main challenge is to make the execution time
of computations for a package of R time steps no lon-
ger than the time required for writing data to the file
(see Figure 4). To reach this goal, all available cores/
threads should be used successfully.

The original version of the studied application
employs the OpenMP parallel programming standard
to utilize cores/threads. This version uses the basic
work-sharing construction #pragma omp parallel
for to assign computations to all the available threads.
Since Intel Xeon Phi coprocessors support the OpenMP
standard, the application code can be successfully exe-
cuted without any modifications on both CPUs and
coprocessors. As a result, all the available threads of
coprocessors and CPUs can be utilized to solve the
modeling problem together. To ensure the best overall
performance without significant modifications to the
code, different setups for the scheduling clauses are
evaluated for different devices, including static,
dynamic and guided.

The joint work of coprocessors and CPUs requires
running an extra task on the CPU side. Since Intel
Xeon Phi is used in the offload mode, a task

responsible for exchanging data and computations has
to be submitted to and from accelerators between the
subsequent time steps. Following the rules of the off-
load mode, the management of this task is assigned to
the master thread of the first CPU team. The main dis-
advantage of this solution is related to management
overheads that cause a workload unbalance on the
CPU side, since the master thread is involved in com-
putations as well. This situation is illustrated in Figure
5(a), which assumes the OpenMP static scheduling of
loop iterations.

In fact, the static scheduling splits a loop before com-
putations, assigning the same or similar range of itera-
tions to threads. Since the master thread is involved in
the management of coprocessors and performs compu-
tations as well, the total time of its work is longer than
that of the other threads. In consequence, the rest of the
threads in the team have to wait until the master thread
finishes tasks assigned to it.

In order to alleviate this overhead, we propose to use
the OpenMP dynamic scheduling for parallel computa-
tions performed by CPUs, as is shown in Figure 5(b). It
allows us to dynamically distribute the loop iterations
among running threads during the application execution.
The dynamic scheduling provides a run-time assignment
of the next free block of loop iterations to the next idle
thread. As a result, the workloads are distributed across
the available CPU threads in a balanced way. In particu-
lar, the total amount of loop iterations assigned to the
master thread will depend on the cost of the coprocessor
management. After completing management activities,
the master thread can start performing computations
together with others threads.

6.4 Optimization of data movements

When porting the studied application to hybrid plat-
forms, another major step is the optimization of data

Figure 5. Parallelization of computations corresponding to
either static scheduling (a) or dynamic scheduling (b).

532 The International Journal of High Performance Computing Applications 32(4)

transfers. As coprocessors are utilized in the offload
mode, efficient data transfers through the PCIe bus are
vital for the overall performance of computations.
Generally speaking, the total size of transferred data as
well as the total amount of data transfers have to be
reduced to a minimum.

Following the previous section, all the necessary
data are transferred to coprocessors only once at the
beginning of computations. Then data are exchanged
between coprocessors and CPUs in every time step.
Therefore, it is necessary to determine a set of data that
have to be transferred to and from coprocessors.
Generally speaking, we transfer only data required for
computations within the next time step. Additionally,
asynchronous data transfers are utilized in order to
overlap data movements with computations. This is
achieved by applying a sequence of directives offered
by the offload mode.

Selecting an appropriate method for providing effi-
cient data transfers is important for the overall perfor-
mance. A basic solution to provide the desired
efficiency is to ensure linear (or continuous) access for
the required data. This is achieved by choosing an
appropriate data structure. Typically, there are two
major possibilities for laying out memory: array of
structures (AoS) and structure of arrays (SoA). The
original version of the studied application utilizes the
AoS option. In this case, periodic access to the required
data and/or copying some unnecessary data is required
for transferring data to and from coprocessors. To
avoid these overheads, we migrate to the SoA option in
order to guarantee both linear access and transferral of
only the necessary data.

Achieving the desired performance of data transfers
requires a reduction in the number of memory alloca-
tions as well. In the proposed approach, data regions
within the coprocessor memory are allocated only once
at the beginning of computations, during the data
exchange, and are then reused multiple times. This
allows us to reduce significantly the performance over-
heads usually generated by memory allocations in the
offload mode.

6.5 Vectorization

The next step required for ensuring the best possible
performance of computations is their vectorization.
The compiler-based automatic vectorization seems to
be the most convenient method for achieving this goal.
Automatic vectorization is provided by the Intel compi-
ler that automatically uses SIMD instructions available
in the Intel Streaming SIMD Extensions (Parallel
Programming, 2013). The compiler detects operations
in the program that can be executed in parallel, and
then converts sequences of operations into parallel vec-
tor operations. In practice, the automatic vectorization

usually occurs when the Intel compiler generates
packed SIMD instructions through unrolling the inner-
most loop.

However, in the studied case the innermost loop can
not be vectorized safely because of complexity of com-
putations, as well as data dependencies. In fact, calcu-
lating a single output element in the innermost loop
requires a set of input elements with dynamically deter-
mined indexes. An example of such a situation is pre-
sented in Figure 6(a). In this case, the automatic
vectorization of computations fails because of irregular
data access, which is unpredictable during compilation.
To solve this problem, we propose to change the code
slightly by adding temporary vectors responsible for
loading the necessary data from the irregular memory
region. It is enough to organize computations in the
SIMD fashion, as is shown in Figure 6(b).

Additionally, appropriate keywords and directives
should be provided as compiler hints, in order to
improve auto-vectorization efficiency. Auto-vectoriza-
tion is also assisted by applying an appropriate data
alignment for the vectorized data. This forces the com-
piler to create data objects in memory, aligned to spe-
cific byte boundaries.

7 Experimental evaluation of numerical
accuracy

This section provides an experimental evaluation of the
proposed approach taking into account the numerical
accuracy of computations performed by all the hetero-
geneous components. In general, some differences in
the architecture of Intel coprocessors compared to Intel
Xeon CPUs lead to a few small differences in imple-
mentation. The floating-point computations on the
Intel Xeon Phi coprocessor may not give results that
are bit-wise identical to the equivalent computations on

Figure 6. The concept of vectorization: (a) scalar
computations based on irregular data access; (b) vectorization
of computations using temporary vectors.

Szustak et al. 533

an Intel Xeon CPU (Corden, 2013), even though the
underlying hardware instructions conform to the same
standards. Additionally, the transformation of opera-
tions that are equivalent mathematically are not equiva-
lent in the finite precision arithmetic (Corden and
Kreitzer, 2015). These behaviors can lead to differences
of outcomes in implementation, especially for the group
of forward-in-time algorithms where subsequent time
steps depend on previous ones.

To validate the numerical accuracy of the proposed
approach, we compare experimentally the simulation
results obtained from the original CPU parallel code
with the new code running on a CPU–MIC hybrid plat-
form. These experiments indicate a very high similarity
of results obtained in both cases, so the differences are
negligible. Figures 7 and 8 illustrate the final results of
modeling alloy solidification using the original code.

For the phase content and concentration of the alloy
component calculated after 110,000 time steps (simu-
lated time t= 2:75�3 s), the differences do not exceed 2
per mille, and refer only to the interphase areas
(Figures 9 and 10). The solidified areas (corresponding
to f.0:05) are identical in both cases, and these areas
correspond to the same nodes. This conclusion also
applies to the liquid areas (f.0:95). Therefore, it can
be concluded that the simulation results for the two
codes differ with each other negligibly. What should be
emphasized in characterizing the correctness of the pro-
posed solution is that these differences are not cumula-
tive, and they do not grow during the simulation.

8 Performance results

In this section, we present performance results obtained
for the new code which is developed using the approach

Figure 7. Phase content for the simulated time
t= 2:75310�3 s (original code).

Figure 8. Concentration of alloy component for the simulated
time t= 2:75310�3 s (original code).

Figure 9. Difference in phase content between original and
new codes for the simulated time t= 2:75310�3 s.

Figure 10. Difference in concentration of alloy component
between the original and new codes for the simulated time
t= 2:75310�3 s.

534 The International Journal of High Performance Computing Applications 32(4)

described in the previous sections, for the double-
precision floating-point format. All the benchmarks are
compiled using the Intel icpc compiler (v.15.0.2) with
the optimization flag -O3. The resulting code is exe-
cuted in the offload mode on the two hybrid platforms
presented in Table 1. The original (basic) version of the
solidification application uses the resources of two
CPUs. All the tests are performed for 110,000 time
steps, and the grid containing 4,000,000 nodes (2000
nodes along each dimensions x and y).

In our experiments, we evaluate different setups for
the loop scheduling clauses in computations performed
by Intel Xeon Phi coprocessors (static, dynamic, auto
and guided) with different configurations for the size of
chunks. The best performance corresponds to the static
scheduling with chunk size equal to 128. In the case of
the parallel workload processed by CPUs, we use the
dynamic loop scheduling option, which allows us to
reduce the overhead generated by the management of
computations assigned to coprocessors. The CPU per-
formance is evaluated exploring different sizes of
chunks for the dynamic scheduling. In consequence,
the best performance results are obtained for the chunk
size equal to 128.

Furthermore, we perform tests of the new, optimized
version of code using different configurations of com-
puting resources. The proposed workload distribution
allows a flexible usage of computing devices, including:
(a) single coprocessor, (b) two coprocessors, (c) two
CPUs and (d) all the devices (two CPUs and two copro-
cessors). In every case, the CPU is responsible for the

management of coprocessors (CPU team 0), and writ-
ing results to the file (CPU team 1).

In our study, the proposed approach is evaluated
using two cases of the solidification application. The
first case is characterized by a static computational
intensity, for a fixed problem size. In the second case,
the intensity of computations changes dynamically for
subsequent time steps during computations. The per-
formance results obtained for the first case is presented
in Table 2, while Table 3 corresponds to the dynamic
intensity of computations.

For the first platform and static computational inten-
sity, the execution of the basic version takes 641 min
and 32 sec. The optimized version with the main work-
load processed on a single Intel Xeon Phi coprocessor is
2.723 faster than the basic version. Its execution takes
235 min and 34 sec. The utilization of two coprocessors
allows us to increase the performance 5.243 . The total
time of the computations for this version is reduced to
122 min and 23 sec. The optimized version of code with
the main workloads executed on two CPUs takes 129
min and 1 sec. This version is 4.973 faster then the
basic version. Finally, the utilization of all the available
resources of the hybrid platform permits us to accelerate
computations 9.333 . The total execution time for this
version is 68 min and 42 sec. The presented performance
results are achieved for the load balancing setup when
each coprocessor calculates 24% of outcomes, while the
two CPUs compute together 52% of outcomes.

For the static computational intensity, the perfor-
mance results for the second platform are quite similar.

Table 2. Performance results for the solidification application with static intensity of computations, obtained for the original and
optimized parallel versions.

Parallel version Computing resources First platform Second platform

Time (min sec) Speedup Time (min sec) Speedup

Basic 23CPU 641# 32$ - 666# 06$ -
Optimized 13MIC 235# 34$ 2.723 235# 34$ 2.823
Optimized 23MIC 122# 23$ 5.243 122# 23$ 5.443
Optimized 23CPU 129# 01$ 4.973 141# 14$ 4.713
Optimized 23CPU+ 23MIC 68# 42$ 9.333 74# 01$ 8.993

Table 3. Performance results for the solidification application with dynamic intensity of computations, obtained for the original and
optimized parallel versions.

Parallel version Computing resources First platform Second platform

Time (min sec) Speedup Time (min sec) Speedup

Basic 23CPU 267# 52$ - 324# 16$ -
Optimized 13MIC 97# 03$ 2.763 97# 03$ 3.343
Optimized 23MIC 50# 19$ 5.323 50# 19$ 6.443
Optimized 23CPU 48# 58$ 5.473 59# 27$ 5.453
Optimized 23CPU+ 23MIC 32# 09$ 8.333 38# 57$ 8.323

Szustak et al. 535

Since this platform utilizes less powerful CPUs, with 12
cores each instead of the 18 cores of the first platform,
the execution times for configurations using CPUs are
now longer, but these differences are not high. In par-
ticular, when all the available resources are employed,
the execution takes about 5 min 13 sec, which means
an increase of about 7.6%.

Table 4 presents results of the performance analysis
corresponding to a single package of 2000 time steps,
for the static intensity of computations. Following the
proposed idea of adaptation (Figure 4), data writing to
the file is totally hidden behind parallel computations
performed simultaneously by processors and coproces-
sors. All the computing devices are characterized by
similar execution times. The cost of data transfers is
practically negligible, and what is more, they are over-
lapped with computations on CPUs. As a result, the
total execution time is determined by CPU computa-
tions, that take a slightly longer time than computa-
tions on any coprocessor.

Going to the case of the dynamic computational
intensity, it should be noted that the first platform allows
us to execute the basic version in 267 min and 52 sec.
Employing a single coprocessor accelerates computa-
tions 2.763 , and all the computations take now 97 min
and 3 sec. The version with two coprocessors takes now
50 min and 19 sec, which is 5.323 faster than the basic
version. For two CPUs, the total execution time of the
optimized version is reduced to 48 min and 58 sec, which
is 5.473 faster than the basic code. Finally, employing
all the available resources of the hybrid platform allows
us to accelerate computations to 8.333 , which corre-
sponds to the execution time of 32 min and 9 sec.

As in the case of the static intensity of computations,
the performance results for the second platform are
quite similar. But now the increase in the execution time
is more significant. In particular, for the configuration
with two CPUs, as well as in the case of employing all
the available resources, this increase is about 21%.

It needs to be highlighted that also, in the case of the
dynamic computational intensity, the domain is currently
divided statically. It is evident that such an approach
does not provide optimal load balancing, as the compu-
tational intensity changes during computations. For the

first platform, we use a configuration when respectively
38% and 31% of outcomes are assigned to CPUs and
each coprocessor, while for the second platform CPUs
and each coprocessor are responsible for computing 34%
and 33% of outcomes, respectively.

Analyzing results from Tables 2 and 3, we conclude
that after optimization a single coprocessor is always
slower than two CPUs. At the same time, in the case of
static computational intensity, two coprocessors are
faster than two CPUs for both platforms, while for
dynamic computational intensity, two coprocessors are
slower than two CPUs based on the Haswell architec-
ture, which is used in the first platform. For the second
platform, two accelerators perform calculations faster
than two CPUs based on the Ivy Bridge architecture.

When the optimized code is executed by two Intel
Xeon Phi coprocessors, each of them calculates half of
all the outcomes. However, the time of the computa-
tions carried out by the two coprocessors is greater than
50% of the execution time achieved for a single copro-
cessor. The reason is the overheads caused by exchan-
ging data between coprocessors. Since direct
communication between two coprocessors is impossible,
the point of data exchange is the CPU main memory,
which usually generates some performance overhead.

Our final conclusion concerns the minimum value of
the number R of time steps processed in every package.
This value is achieved for the hybrid version with two
CPUs and two MICs. Our experiments show that at
least R= 300 and R= 650 time steps are enough to hide
data writing to the file behind parallel computations, for
static and dynamic computational intensity, respectively.

9 Conclusions and future work

Using hybrid platforms with accelerators is a promising
direction for improving the efficiency of a wide range of
real-life applications. Particularly, the Xeon Phi copro-
cessors open broad possibilities in this area, mainly due
to the general-purpose programming environment pro-
vided by the Intel MIC architecture. This advantage
can be successfully explored for quick and easy porting
of program code to hybrid platforms with Intel Xeon
Phi coprocessors, assuming no significant modifications
of the code.

At the same time, achieving the highest overall per-
formance requires taking advantage of all the available
computing resources to work together. The heteroge-
neous programming model enables developers to meet
this challenge. An effective example of this model is a
combination of the offload mode for Intel Xeon Phi,
and the OpenMP shared-memory programming stan-
dard. This successfully helped us to employ two Intel
Xeon CPUs and two Intel Xeon Phi coprocessors for
the parallelization of the solidification application.
Additionally, it addresses key programming

Table 4. Performance analysis for executing a package of 2000
time steps on 23CPU+ 23MIC (first platform, static intensity).

Aggregate time (s)

Total execution 74.90
Computations on CPUs 74.90
Computations on 1st MIC 72.27
Computations on 2nd MIC 73.07
Transfers of data 0.14
Writing data to file 11.53

536 The International Journal of High Performance Computing Applications 32(4)

productivity issues by allowing a separation of con-
cerns between the expression of functional semantics
and disclosure of portable parallelism, and the perfor-
mance tuning and control over executing applications
on hybrid architectures. In consequence, this combina-
tion is an efficient and flexible solution for porting
extensive code that consists of both massively parallel
and sequential regions to platforms with Intel Xeon
Phi coprocessors.

The utilization of all the available resources of a
hybrid platform stipulates the development of efficient
and flexible methods for workload distribution across
computing devices. Using coprocessors and CPUs to
perform the major parallel workloads, and executing
the rest of an application on CPUs, allows for success-
ful acceleration of the whole application. Such a work-
load distribution permits an appropriate utilization of
both coprocessors designed for massively parallel com-
putations and CPUs that are designed for general
usage.

The approach proposed in this article allows us not
only to overlap data movements with computations,
but it also provides an adequate utilization of cores/
threads and vector units of CPUs, as well as coproces-
sors. Moreover, we propose the sequence of steps nec-
essary for porting the original solidification
application to hybrid platforms with accelerators that
allows us to take advantage of all the available com-
puting components, without significant modifications
of the application code. The developed approach per-
mits us to execute the whole application up to 9.333
faster than the original parallel version. Furthermore,
the CPU–MIC hybrid platforms allows achieving a
speedup of about 1.93 compared with the CPU plat-
form with 24 cores based on the Ivy Bridge architec-
ture, and about 1.53 against the Haswell-based CPU
platform with 36 cores. As a result, the total execu-
tion time is reduced from more than 10 to nearly 1
hour (see Table 2).

This work proves the efficiency of the proposed
workload distribution for the application characterized
by a static computational intensity. However, the static
load balancing does not guarantee the best distribution
of workload when the computational intensity is chan-
ged for successive time steps. Eliminating this disadvan-
tage requires development of a dynamic (online)
method for load balancing. This is a primary direction
for our future work.

Additionally, the performance results achieved in
this study provide the basis for further research on opti-
mizing the solidification application taking into account
features of memory, cache hierarchy and computing
cores, as well as vector units. Another direction for
future work is adaptation to heterogeneous clusters
with Intel MICs, including further development and
optimization of code.

Acknowledgements

The authors are grateful to the Czestochowa University of
Technology for granting access to Intel CPU and Xeon Phi
platforms providing by the MICLAB project No.
POIG.02.03.00.24-093/13.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the National Science
Centre (Poland) (Grant number UMO-2015/17/D/ST6/
04059), as well as partially supported by the Ministry of
Education, Youth and Sports (Czech Republic) from the
Large Infrastructures for Research Experimental
Development and Innovations project ‘‘IT4Innovations
National Supercomputing Center—LM2015070’’.

References

Adrian H and Spiradek-Hahn K (2009) The simulation of

dendritic growth in Ni–Cu alloy using the phase field

model. Archives of Materials Science and Engineering 40

(2): 89–93.
Benito J, Ureñ F and Gavete L (2008) The generalized finite

difference method. In: Àlvarez MP (ed.) Leading-Edge

Applied Mathematical Modeling Research. New York, NY:

Nova Science Publishers, pp.251–293.
Chen L, Huo X, Ren B, et al. (2015) Efficient and simplified

parallel graph processing over CPU and MIC. In: Proceed-

ings of the 2015 IEEE international parallel and distributed

processing symposium (IPDPS), Hyderabad, India, 25–29

May 2015, pp.819–828. Piscataway, NJ: IEEE Xplore.
Choudhury A, Reuther K, Wesner E, et al. (2012) Compari-

son of phase-field and cellular automaton models for den-

dritic solidification in Al–Cu alloy. Computational

Materials Science 55: 263–268.
Colfax International (2015) Colfax Servers based on Intel�

Xeon Phi� Coprocessors. Available at: http://www.colfax-

intl.com/nd/xeonphi/servers.aspx (accessed 20 Novem-

ber 2016).
Corden M (2013) Differences in floating-point arithmetic

between Intel Xeon Processors and the Intel Xeon Phi

Coprocessor. Intel Corporation. Available at: https://

software.intel.com/en-us/articles/differences-in-floating-

point-arithmeticbetween-intel-xeon-processors-and-the-

intel-xeon (accessed 28 March 2013).
Corden M and Kreitzer D (2015) Consistency of floating-

point results using the Intel Compiler. Software Solu-

tions Group, Intel Corporation. Available at: https://

software.intel.com/en-us/articles/consistency-of-floating-

point-resultsusing-the-intel-compiler (accessed 2 August

2012).
Folch R, Casademunt J, Hernandez-Machado A, et al. (1999)

Phase-field model for Hele-Shaw flows with arbitrary

Szustak et al. 537

viscosity contrast. II. Numerical study. Physical Review E

60 (2): 1734–1740.
Hager G and Wellein G (2011) Introduction to High Perfor-

mance Computing for Science and Engineers. Boca Raton,

FL: CRC Press.
Heinecke A, Breuer A, Rettenberger S, et al. (2014) Petascale

high order dynamic rupture earthquake simulations on

heterogeneous supercomputers. In: Proceedings of the 2014

ACM/IEEE international conference on high performance

computing, networking, storage and analysis (SC’11), Seat-

tle, WA, USA, 12–18 November 2011, pp.3–14. Washing-

ton, DC: IEEE Computer Society. IEEE Xplore
Intel Corporation (2013) Intel Xeon Phi Coprocessor System

Software Developers Guide. Available at: https://software.

intel.com/en-us/articles/intel-xeon-phi-coprocessor-system

software-developers-guide (accessed 20 November 2016).
Intel Corporation (2015) Intel Product Specifications. Avail-

able at: http://ark.intel.com/ (accessed 20 November 2016).
IT4Innovations (2015) National Supercomputing Center

IT4Innovations. Available at: http://www.it4i.cz.
Jeffers J and Reinders J (2014) Intel Xeon Phi Coprocessor

High-Performance Programming. Waltham, MA: Elsevier.
Karma A, Kessler D and Levine H (2001) Phase-field model

of mode III dynamic fracture. Physical Review Letters

87(4). 045501/1 -045501/4
Kulawik A (2013) The Modeling of the Phenomena of the

Heat Treatment of the Medium Carbon Steel. Monogra-

fia, vol. 281. Czestochowa, Silesia: Wydawnictwo Poli-

technki Czestochowskiej.
Kurzak J, Bader D and Dongarra J (eds.) (2011) Scientific

Computing with Multicore and Accelerators. Boca Raton,

FL: CRC Press.
Liu Y and Deng L (2015) Acceleration of CFD Engineering

Software on GPU and MIC. Lecture Notes in Computer

Science 9532: 835–848.
Liu Y, Zhang X, Yang C, et al. (2014) Accelerating HPCG on

TIANHE-2: A hybrid CPU–MIC algorithm. In: Proceed-

ings of the 2014 20th IEEE international conference on par-

allel and distributed systems (ICPADS), Hsinchu, Taiwan,

16–19 December 2014, pp.542–551. IEEE Xplore.
Liviero B (2015) Intel Xeon Phi: Application and solutions

catalogue. Available at: https://software.intel.com/en-us/

xeonphionlinecatalog (accessed 20 November 2016).
Longinova T, Amberg G and Ågren J (2001) Phase-field

simulations of non-isothermal binary alloy solidification.

Acta Materialia 49(4): 573–581.
MICLAB (2015) Pilot Laboratory of Massively Parallel Sys-

tems (MICLAB). Available at: http://miclab.pl (accessed

20 November 2016).
OpenMP (2015) OpenMP Application Programming Inter-

face. Available at: http://www.openmp.org/
Colfax International (2013) Parallel Programming and Opti-

mization with Intel Xeon Phi Coprocessors. Sunnyvale, CA:

Colfax International.
Provatas N and Elder K (2010) Phase-Field Methods in Mate-

rials Science and Engineering. Hoboken, NJ: Wiley.
Rahman R (2013) Intel Xeon Phi Coprocessor Architecture

and Tools: The Guide for Application Developers. New

York, NY: APress.
Shimokawabe T, Aoki T, Takaki T, et al. (2011) Peta-scale

phase-field simulation for dendritic solidification on the

TSUBAME 2.0 supercomputer. In: Proceedings of the

2011 ACM/IEEE international conference on high perfor-

mance computing, networking, storage and analysis

(SC’11), Seattle, WA, USA, 12–18 November 2011, 11

pages. IEEE Xplore: IEEE Computer Society.
Steinbach I (2009) Phase-field models in materials science.

Modelling and Simulation in Materials Science and Engi-

neering 17(7): 14 pages.
Szustak L, Halbiniak K, Kulawik A, et al. (2016) Toward par-

allel modeling of solidification based on the generalized

finite difference method using Intel Xeon Phi. In: Proceed-

ings of 11th international conference on parallel processing

and applied mathematics (PPAM 2015) Wyrzykowski R,

Deelman E, Dongarra J, et al. (eds), Part I. Volume 9573,

pp. 411–412.
Szustak L, Rojek K and Gepner P (2014) Using Intel Xeon

Phi coprocessor to accelerate computations in MPDATA

algorithm. In: Proceedings of 10th international conference

on parallel processing and applied mathematics (PPAM

2013) Wyrzykowski R, Deelman E, Dongarra J, et al.

(eds), Part I. Volume 8384. pp. 582–592.
Szustak L, Rojek K, Olas T, et al. (2015) Adaptation of

MPDATA heterogeneous stencil computation to Intel

Xeon Phi coprocessor. Scientific Programming. Volume

2015, 14 pages.
Szustak L, Rojek K, Wyrzykowski R, et al. (2014) Toward

efficient distribution of MPDATA stencil computation on

Intel MIC architecture. In: Proceedings of the 1st interna-

tional workshop on high-performance stencil computations

(HiStencils’14), pp.51–56. Vienna, Austria, 21 January

2014. HiStencils. Available at: http://www.exastencils.org/

histencils/2014/
Takaki T (2014) Phase-field modeling and simulations of den-

drite growth. ISIJ International 54(2): 437–444.
Vladimirov A (2015) Performance to power and performance

to cost ratios with Intel Xeon Phi Coprocessors (And why

13 acceleration may be enough). 27 January 2015, 8

pages. Sunnyvale, CA: Colfax International. Available

at: https://colfaxresearch.com/performance-to-power-and-

performance-to-cost-ratioswith-intel-xeon-phi-coprocessors-

and-why-1x-acceleration-may-be-enough/ (accessed 20

November 2016).
Warren J and Boettinger W (1995) Prediction of dendritic

growth and microsegregation patterns in a binary alloy

using the phase-field method. Acta Metallurgica et Materi-

alia 43(2): 689–703.
Wolfe N, Liu T, Carothers C, et al. (2014) Heterogeneous

concurrent execution of Monte Carlo photon transport on

CPU, GPU and MIC. In: Proceedings of the fourth work-

shop on irregular applications: Architectures and algorithms,

New Orleans, Louisiana, 16–21 November 2014, pp.49–52.

Piscataway, NJ: IEEE Press.
Wyrzykowski R, Rojek K and Szustak L (2012) Model-dri-

ven adaptation of double-precision matrix multiplication

to the cell processor architecture. Parallel Computing 38:

260–276.
Wyrzykowski R, Szustak L and Rojek K (2014a) Paralleliza-

tion of 2D MPDATA EULAG algorithm on hybrid archi-

tectures with GPU accelerators. Parallel Computing 40(8):

425–447.

538 The International Journal of High Performance Computing Applications 32(4)

Wyrzykowski R, Szustak L, Rojek K, et al. (2014b) Towards

efficient decomposition and parallelization of MPDATA

on hybrid CPU–GPU cluster. Lecture Notes in Computer

Science 8353: 434–444.
Xue W, Yang C, Fu H, et al. (2015) Ultra-scalable CPU–

MIC acceleration of mesoscale atmospheric modeling on

TIANHE-2. IEEE Transactions on Computers 64(8):

2382–2393.
Zaeem M, Yin H and Felicelli S (2013) Modeling dendritic

solidification of Al–3%Cu using cellular automaton and

phase-field methods. Applied Mathematical Modelling

37(5): 3495–3503.

Author Biographies

Lukasz Szustak received his MSc in Computer Science
from the Czestochowa University of Technology in
2008 and his PhD in 2012. During this period, his doc-
toral research focused on adaptation of high perfor-
mance computing to modern parallel architectures
including hybrid platforms. Since 2012, Dr. Szustak is
employed at Czestochowa University of Technology.
His current work is associated with the development of
efficient methods of scheduling, load balancing, and
adaptations of stencil based computations to Intel
MIC and CPUs architectures.

Kamil Halbiniak received his MSc degree in Computer
Science in 2015 from the Czestochowa University of
Technology, Poland. In the same year, he started his
PhD studies in parallel computing, with Professor
Roman Wyrzykowski as a scientific advisor. His

research focus is on the adaptation of scientific applica-
tions to HPC computing platforms based on multiand
manycore parallel architectures, including CPUs and
Intel MIC.

Lukasz Kuczynski received his MSc degree in
Computer Science in 2001 from the Czestochowa
University of Technology, Poland. In 2010 he received
his PhD degree in Computer Science for his disserta-
tion on data management in grid systems. His research
focuses on code optimization for multicore architec-
tures, including Intel and ARM.

Joanna Wrobel received her MSc degree in Computer
Science from the Czestochowa University of
Technology, Poland, in 2011. Currently she is a PhD
student at the Faculty of Mechanical Engineering and
Computer Science. Her scientific activity is associated
with the numerical modeling of thermo-mechanical
phenomena and the use of artificial intelligence in this
area.

Adam Kulawik received his MSc in Computer Science
from the Czestochowa University of Technology,
Poland, in 2000 and his PhD in Technical Science in
2005. His research focus on the numerical analysis of
thermal phenomena, the phase transformations in the
solid state and stresses occurring during the process of
the heat treatment of steel. He develops software for
engineering computations using the finite element
method and the generalized finite difference method.

Szustak et al. 539

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

