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A B S T R A C T

Heterogeneous (or hybrid) computing platforms with Intel Xeon Phi accelerators offer potential
advantages of energy efficient, massively parallel computing, while supporting parallel pro-
gramming models familiar for users of multicore CPUs. However, realizing this potential for real-
world applications still remains a challenging issue. The main goal of this paper is the suitability
assessment of offload-based programming environments for porting a real-life scientific appli-
cation to hybrid platforms with Intel KNC and KNL accelerators, assuming no significant mod-
ifications of the application code. The main criterion of this assessment is the application per-
formance. The evaluated environments include: 1) Intel Offload coupled with OpenMP, 2)
OpenMP 4.0 and 3) OpenMP 4.5 Accelerator Models, and 4) hStreams Library with OpenMP. A
real-life application dedicated to the numerical modeling of alloy solidification is used as a
testbed in the assessment. An experimental evaluation of the four versions of the application code
for a platform with KNC coprocessors shows that excluding OpenMP 4.0, the rest of them are able
to adapt to expansion of available resources, however, with different efficiency. While the
shortest execution time is achieved for Intel Offload, the high-level abstractions of hStreams
contribute considerably to making porting and tuning the application easier, with low perfor-
mance overheads in comparison to the low-level Intel Offload extension. Benchmarking the
application performance and scalability on a platform with multiple KNL processors, using the
Offload over Fabric technology with Intel Offload and OpenMP 4.5, concludes the assessment.

1. Introduction

Heterogeneous (or hybrid) computing platforms have become increasingly attractive in many application domains [34,41,52].
The combination of a general-purpose host CPU coupled with specialized computing devices (e.g., GPU, Intel Xeon Phi or FPGA) in
many cases allow users to accelerate their applications significantly [24,40], as well as to increase the performance per Watt ratio.
However, realizing these potentials in practice still remains a challenging issue.

Typically, the host of a hybrid platform controls the code execution, while the time consuming part of code is offloaded to the
coprocessor (accelerators). Offloading needs to transfer data between the host and device before and after executing computing
kernels. The performance overhead generated by these transfers determine where offloading is worth to utilize. To amortize these
overheads, the execution of kernel is overlapped with data movements [33]. Another way of improving the overall performance of
hybrid platforms is using the CPU host not only for the management of code execution, but also to perform computing-intensive
pieces of code or/and other operations like storage accesses [44].
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The Intel Xeon Phi accelerators are based on the Intel Many Integrated Core (MIC) architecture [37,47]. It is designed for
massively parallel applications, and includes a large number of cores with wide vector processing units. The important advantage of
MIC architecture is support of parallel programming models familiar to users of conventional multicore CPUs. The first generation of
Intel Xeon Phi devices known as Knight Corner (KNC) [18,37] is available as coprocessors connected to CPU through the PCIe bus.
The second generation known as Knight Landing (KNL) [20] is delivered as a standalone, self-boot processor.

Effective parallelism is difficult to achieve in heterogeneous architectures, especially when both CPU and MIC devices are used to
perform computing-intensive parts of code. Besides achieving high performance, the cost of software development becomes another
bottleneck preventing the wide adoption of hybrid platforms. So there is a considerable interest in investigating the influence of
programming environments on the efficiency of porting real-world applications to CPU–MIC platforms. In this work, we study the
practical usage of the heterogeneous programming model â- a mixture of offload programming and shared-memory approaches.

The main goal of this paper is the suitability assessment of various programming environments implementing this model when
porting a real-life scientific application to hybrid platforms with Intel Xeon Phi accelerators, assuming no significant modifications of
the application code. The first environment is the Intel Compiler Assisted Offload [6] coupled with OpenMP [36], the most popular
standard of programming shared-memory platforms. The next two ones are different versions of the OpenMP Accelerator Model
[26,27,36], an extension of OpenMP. The last one is a mixture of OpenMP with the Hetero Streams Library [13,34], a new het-
erogeneous streaming framework which offers a higher level of abstraction to provide effective concurrency among tasks.

Following our works [10,44–46], a real-life scientific application is used as a testbed in the assessment. This application is
dedicated to the numerical modeling of alloy solidification. The numerical scheme is based on the phase-field approach [48] with the
generalized finite difference method (FDM) and explicit scheme of calculations. The basic assumption of our research is to accelerate
the application by using efficiently the computing resources of hybrid platforms with Intel CPUs and MIC accelerators, without
significant modifications of the code.

The contributions of this paper to areas of parallel computing and high performance computing simulation are as follows:

1. The sequence of steps required for porting and optimizing real-life scientific applications on hybrid CPU–MIC platforms, without
significant modification of application codes, is thoroughly reformulated in comparison with [44]. The proposed approach allows
us to minimize the amount of data transfers, as well as to overlap the following operations: 1) computation, 2) inter-device
communication, and 3) writing outcomes to the file. Also, it becomes possible to achieve the flexible load balancing of workloads
between devices, and to optimize the utilization of resources of devices.

2. The suitability assessment of four programming environments implementing the offload-based heterogeneous programming
model is provided based on the way how these environments support the implementation of the proposed approach for the
solidification modeling application. The main criterion of this assessment is the application performance. Among the considered
aspects which differentiate these environments are:

• management of accelerators;

• way of separation of computations and writing results to the file;

• mechanisms used for the inter-device and intra-CPU synchronization;

• way of parallelizing the workload execution within devices.
3. An experimental evaluation of four versions of the solidification application for a platform with KNC coprocessors shows that

three of them (using Intel Offload, OpenMP 4.5 Acceleator Model, and hStreams Library) are able to adapt to expansion of
available resources, however, with not the same efficiency. The shortest execution time is achieved for Intel Offload. At the same
time, the high-level abstractions of hStreams contribute considerably to making porting and tuning the application easier, with
low performance overheads in comparison with the low-level Intel Offload extension.

4. Benchmarking the application performance and scalability on a platform with multiple KNL processors, using the Offload over
Fabric (OoF) technology with Intel Offload and OpenMP 4.5, concludes the assessment. The results of benchmarking allow us to
reveal capabilities and limitations of the offload programming model based on OoF. In particular, the usage of 4 KNLs permits the
speedup of about 6.7x and 3.45x against the optimized OpenMP code on 2 CPUs, for respectively the static and dynamic intensity
of computations.

The material of the paper is organized as follows. Section 2 contains an introduction to the heterogeneous programming model
based on offloading, including the overview of hybrid platforms with KNC coprocessors. Section 3 provides a concise overview of
programming environments considered in this paper, and the next section outlines the solidification application, which is used to
assess these environments. An approach to adapting the application to hybrid CPU–MIC platforms is proposed in Section 5, while
Section 6 describes how this approach is further adjusted to the considered environments. Section 7 presents performance results with
discussion. While the focus of Sections 2–7 is on KNC coprocessors, Section 8 extends our research to include platforms with KNL
processors, where CPU and MIC devices are connected by HPC fabric. Related works are discussed in Section 9, while Section 10
concludes the paper and addresses future works.

2. Offload-based heterogeneous programming model

2.1. Overview of hybrid CPU–MIC platforms with KNC coprocessors

The hybrid CPU–MIC architecture combines in various proportion two types of components: 1) general-purpose Intel Xeon
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processors, and 2) Intel Xeon Phi devices designed for massively parallel computing. While HPC servers with KNC coprocessors come
in a variety of configurations [29,32,37], the most common platforms usually contain two CPUs, and one or two coprocessors.

The KNC coprocessor contains more than 50 cores, caches, and necessary control subsystems [18]. All these components are
connected together by the bidirectional ring interconnect. Cores are clocked at about 1 GHz, and allow running up to 4 hardware
threads per core. An integral part of every core is the vector processing unit, that supports a 512-bit SIMD instruction set. Each core
has 128 vector registers 512-bit wide, and is equipped with private L1 and L2 caches that are kept fully coherent by the ring
interconnect. The coprocessor has over 6 GB of own on-board GDDR5 memory (maximum 16 GB). Fig. 1 presents an example of the
hybrid CPU–MIC platform with two CPUs and two coprocessors. Following the concept of ccNUMA architectures, CPU processors are
connected via the QPI bus. KNC coprocessors are delivered as PCIe devices, so exchanging data between the main memory and
coprocessors is possible only via the PCIe bus.

The KNC coprocessors (as well as KNL processors) provide a general-purpose programming environment similar to that available
for Intel CPUs [37]. It supports the source-code portability between CPU and MIC devices, that gives possibility to run the same code
using different devices. Programmers can write their codes using the most popular programming languages like C/C++ and Fortran.
This architecture supports also traditional parallel programming standards [9] such as OpenMP, Intel TBB, C++11 threads and MPI.

The coprocessor allows three execution modes that can be used to design and execute applications: 1) offload mode, 2) native
mode, and 3) symmetric one. In this research, we use the offload mode to force Intel Xeon Phi to work together with CPU. In this
mode, the programmer determines a section of the source code to run on coprocessors. When the Intel compiler encounters the region
to be offloaded, it generates the binary for Xeon Phi. The resulting code starts on the host side, while the selected regions are
transferred to the coprocessor using runtime mechanisms provided by the Intel MPSS software [17].

2.2. Basics of heterogeneous programming model

For hybrid platforms, one of ways to achieve the high performance of computations is to take advantage of both CPUs and
coprocessors using the heterogeneous programming model based on a mixture of shared-memory and offload programming models.
While the first one is used to harness the resources of cores/threads within both CPUs and MIC devices, the second one is utilized for
offloading data and computations to coprocessors. The typical choices for shared-memory programming are: OpenMP, C++ threads,
Intel TBB, Intel Cilk Plus and POSIX threads. The popular solutions for offloading codes to Intel Xeon Phi coprocessors include Intel
Compiler Assisted Offload, and OpenMP Accelerator Model.

Among the main issues of achieving effective parallelism in hybrid CPU–MIC platforms are:

1. flexible management of computing resources;
2. minimization of overheads for management of memories, both in coprocessors and CPUs;
3. low-cost intra- and inter-device synchronizations of CPU/MIC devices;
4. minimization of overheads for communication between CPUs and MICs, including overlapping communication and computation.

The typical solution for management of computing resources is the host-centric model, when the CPU host transfers (or offloads)
data and binaries to coprocessors. The offloaded code is then executed using resources of coprocessors in a parallel way. An important
requirement is providing a suitable affinity of threads and cores, which is indispensable to minimize performance overheads. A rather
common issue is also assuring a required partition of cores, for both CPU and coprocessors, in order to execute various parts of the
application code.

Fig. 1. Hybrid architecture combining CPUs and KNC coprocessors [44].
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Multiple allocations and deallocations of memories in MIC devices could considerably deteriorate the overall performance. An
efficient way to alleviate this bottleneck is providing the flexible support for the data persistence between multiple calls of offloaded
regions of code. At the same time, it is responsibility of programmers to use such optimization techniques as double buffering on the
CPU side. This allows performing computations by CPUs and offloading data and computations to coprocessors concurrently.

Minimizing synchronization overheads is vital to optimize the overall performance of parallel computing. In the case of hybrid
platforms, besides usual synchronization issues inside CPU and MIC devices, there are overheads of synchronizing activities per-
formed by devices of different kinds (CPUs and MICs). As especially expensive, these inter-device synchronizations should be avoided
as much as possible. Thus, the asynchronous approach has to be used whenever possible. This is mainly the responsibility of pro-
grammers, but a programming environment has to provide an efficient and convenient support for the asynchronous interaction.

The significance of such a support is increased drastically taking into account huge possibilities for minimizing overheads of inter-
device communication by overlapping communication and computation. First, it is important to assure transferring data between
CPUs and MICs during computations performed by coprocessors (asynchronous transfer from the coprocessor point of view).
Secondly, enabling asynchronous computations on the host and inter-device data transfers requires the use of a non-blocking me-
chanism for offloading the code by the host.

3. Programming environments for CPU–MIC platforms

3.1. Intel Compiler Assisted Offload

The Intel Compiler Assisted Offload extension (Intel Offload shortly) [6,37] is a method to offload computations to Intel Xeon Phi
that uses the Intel compiler and its offload pragma support to manage the computations and offloaded data. It is obligation of
programmers to select a section of the source code to run on coprocessors. This extension is also known as Intel Language Extension
for Offload (LEO) [33].

The execution model of Intel Offload is based on the host-centric view, where the host transfers data and computations to
coprocessors, using offload target (mic) construct. The code region which is transferred to the MIC device is executed by one thread,
that can spawn multiple threads using an appropriate parallel construct. On platforms with multiple coprocessors, Intel Offload
allows determining explicitly which coprocessor is selected for the execution.

In the offload mode, the utilization of coprocessors requires as a rule exchanging data between the host and coprocessors.
Transferring data to coprocessors is possible using the following clauses: in, out, and inout. These clauses enable the implicit
allocation of memory and determining the direction of data transfer. At the same time, Intel Offload permits omitting the exchange of
data between the host and MIC devices by utilizing nocopy clause.

Using offload target (mic) directive to offload data and computation by default results in the allocation and deallocation of the
coprocessor memory. When considering an application with multiple calls of offloaded regions, the memory allocations usually
generate considerable performance overheads. To resolve this problem, Intel Offload gives the opportunity to control allocations and
deallocations of memory using alloc_if and free_if modifiers, respectively. These modifiers work with in, out, inout and nocopy
clauses, and specify how data are allocated and deallocated before and after the execution of offloaded regions. In consequence, this
solution ensures the data persistence between multiple calls of these regions.

To offload solely data to MIC devices, the programming interface provides also offload_transfer target (mic) construction. This
construction allows transferring data during computations executed by coprocessors (asynchronous transfer from the point of view of
coprocessors). Specifying direction of data transfers is possible using in and out clauses. This mechanism enables also controlling the
data persistence using the aforementioned alloc_if and free_if qualifiers.

The Intel offload model permits the asynchronous execution of offload target and offload_transfer directives. By default, a
thread calling any of these pragmas is blocked until their completion. Enabling asynchronous computations and data transfers (from
the host point of view) requires use of signal clause. In consequence, the host can immediately continue the execution of program.
The synchronization of asynchronous activities is possible through wait clause of the dedicated offload_wait target (mic) directive.
As a result, a thread that encounters this directive waits for the completion of asynchronous execution.

An important directive of Intel Offload is offload_target. It is used to specify the region of source code (functions and variables)
available for coprocessors. It allows the compiler to generate the binaries which can be directly called from the offloaded region. A
snippet of the source code written using Intel Offload is shown in Listing 1. It corresponds to offloading both the data arrays A, B, C,
and computations performed on these arrays by the coprocessor, for the given number of time steps. While in clause of off-
load_transfer directive (Line 1) is used to transfer the input arrays B and C to the coprocessor, as well as to initalize the output array
A, out clause of offload target directive (Line 7) is responsible for returning computed values of the array A to the host. The
presented code utilizes signal clause (Line 9) for the asynchronous execution of the offloaded region. As a result, the host starts its
activity (Line 17) immediately after initializing computations on the coprocessor. Then the activities of the host and coprocessor are
synchronized using offload_wait directive (Line 18).

3.2. OpenMP Accelerator Model: OpenMP 4.0

OpenMP is the directive-based, parallel programming standard that supports multi-platform shared-memory parallel program-
ming in C/C++ and Fortran [36]. Starting with version 4.0, the execution model of OpenMP is extended by the mechanism called
the OpenMP Accelerator Model (OMPAM in short) [26]. It is design to simplify programming heterogeneous platforms with many-
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core accelerators such as Intel MICs or GPUs. This extension assumes that a computing platform consists of multiple target devices
connected to the host.

Similar to Intel offload, the execution model of OMPAM is based on the host-centric view, where target construct is used to copy
(offload) data and computations to coprocessors. By default, the code region offloaded to an coprocessor is executed using only one
thread, until it encounters an adequate parallel construction. Using device clause, OMPAM enables specifying a device where the
target region has to be executed.

The OpenMP Accelerator Model–similar to Intel Offload -allows the management of memory allocation for target devices. It
provides target data construct which creates the device data environment based on host buffers mapped to the accelerator. This
construct specifies a single block of code where the accelerator memory is allocated on entry to the block, and deallocated on exit.
This solution enables reusing the same buffers among multiple target regions.

Defining the data movements between the host and target devices is implemented using map clause with four data-mapping
attributes that specify how buffers are allocated, initialized and copied to devices. The first three attributes: to, from, and tofrom,
allow the implicit allocation of device memory and determination of data copying direction. The last attribute, alloc is used when the
explicit allocation of device memory is required.

An important construction of OMPAM is target update. It allows the synchronization of host and device memory buffers, and can
be used only within the device data environment. The direction of update is specified using two clauses: to and from, that provide the
list of synchronized buffers corresponding to variables in the device data region. Another directive of OMPAM, declare target is used
to determine regions of the source code mapped to the target device.

The important advantage of OMPAM is the provision of support for multiple hybrid platforms, through a growing number of
compilers. This allows achieving the code portability, and makes this choice especially interesting for developers of parallel codes for
platforms with various accelerators.

The code presented in Listing 1 is rewritten in Listing 2, using OpenMP 4.0. Here map clause of target data construct (Line 1)
provides transferring the input arrays B and C to the coprocessor, as well as initializing the output array A, whilst the computed
values of the array A are returned to the host using from clause of target update construct (Line 13). Since OpenMP 4.0 does not
provide the asynchronous execution of target directive, the simultaneous execution of host and coprocessor activities is ensured
through the OpenMP task parallelism. In the presented code, three threads are created. While the master thread of the parallel region
is responsible only for spawning tasks, the other two threads provides the execution of tasks corresponding to the host and copro-
cessor activities, that are synchronized using taskwait construct (Line 18).

3.3. OpenMP Accelerator Model: OpenMP 4.5

Starting with OpenMP 4.5, the OpenMP accelerator model allows the asynchronous execution of target directive using nowait
clause [36]. By default, a thread that encounters target construct is blocked until the completion of execution. At the same time,
using target nowait clause, the programmer can guarantee that the target region is launched in the background, and a thread can
immediately continue execution of the program serially or simultaneously with other threads in a parallel region. This clause works
also with target update directive. In this case, the synchronization of the host and device buffers is performed in the background. The
completion of an asynchronous activity is controlled using taskwait construct.

OpenMP 4.5 introduces two additional clauses, enter data and exit data [36], for the management of device memory. They give
programmers more flexibility in creating a device data environment which is not associated with a single block of code. As a result,
the device memory may be deallocated before the completion of application execution.

Again Listing 3 presents the code of Listing 1 rewritten with OpenMP 4.5. Now map clause of target enter data construction

Listing 1. Offloading computations and data with Intel Offload.
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(Line 1) is responsible for initializing the output array A, as well as transferring the input arrays B and C to the accelerator. Similar to
Listing 2, from clause of target update construction (Line 10) is used to transfer the output data to the host. The code utilizes nowait
clause (Lines 6 and 10) for ensuring the asynchronous execution of the offloaded region and data transfer, while depend clause of
target and target update constructions (Lines 5 and 11) is required to define the order of their execution in the asynchronous mode.
After initializing both data transfers and computations in the accelerator, the host starts executing its activity (Line 11). The activities
of CPUs and MICs are synchronized using taskwait (Line 12). The presented code is quite similar to that from Listing 1, where Intel
Offload is used. In both cases, the way of achieving the asynchronous management of devices is based on additional clauses of
offloading constructions. Comparing both versions of the OpenMP Accelerator Model, one can see that the asynchronous execution
provided by OpenMP 4.5 simplifies considerably the application codes for hybrid platforms.

3.4. Hetero Streams Library

The Hetero Streams Library (hStreams in short) [13] is a library-based extension for stream programming in heterogeneous
environments. This extension implements [34] the heterogeneous asynchronous multitasking model, assuming the existence of one or
more FIFOs abstractions, where jobs (tasks) are submitted for the execution on computing devices [46]. The hStreams framework
focuses on ensuring portability in heterogeneous environments. It is dedicated to platforms consisting of MIC coprocessors and Intel
Xeon CPUs. This library provides an abstraction of physical resources by applying the notions of domains, streams and memory
buffers.

Before proceeding further, it is necessary to introduce two key terms used in the hStreams programming model: source and sink
[19,46]. The first one refers to the place where a job is enqueued to be executed, while the second one corresponds to the place where
a job is actually executed. This approach ensures a separation of concerns between management of tasks and control how they are
mapped and executed by computing resources. In typical scenarios, the source is a process running on the host CPU, while the sink
can reside on the same CPU, as well as on coprocessors. The source and sink can share resources of the same CPU or be placed on
separate devices. An example of placement of source and sink is shown in Fig. 2.

Listing 2. Offloading computations and data in OpenMP 4.0.

Listing 3. Offloading computations and data in OpenMP 4.5.
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The hStreams library distinguishes two types of domains: physical and logical ones. A physical domain represents computing
resources which share one coherent memory domain. An example of these domains is a host processor, MIC coprocessor, or single
node of cluster. The hStreams framework treats all the components of a platform uniformly. Physical domains are detectable and
enumerable by the interface of hStreams. Each domain has a private set of properties, such as: number of threads, core frequency, ISA
type, and size of each supported memory type. A logical domain is an abstraction of a physical domain [20], and one or more logical
domains can be mapped to a certain physical domain (see Fig. 3). A given logical domain is specified by a mask which defines a subset
of computing resources of a physical domain.

A stream is a primary building block of the hStreams execution model. It is a FIFO queue placed into a given logical domain.
Streams have two endpoints: 1) source where the actions are inserted into the stream, and 2) sink where the actions are executed. All
actions that may be placed into streams are grouped into three categories: compute task, data transfers, and synchronization.
Compute tasks can naturally employ all the available threads of a stream by taking advantage of parallel programming standards like
OpenMP. The hStreams library permits creating multiple streams within the same logical domain. An example of configuration of
domains and streams is presented in Fig. 3.

The memory resources shared between source and sinks are called logical buffers. The logical buffers are registered by the
application on the source. Once the hStreams run-time is aware of a buffer, a pointer to a memory location anywhere inside that
buffer is recognized as a handle, and can be used for performing data transfers or compute actions involving that buffer. A logical
buffer created by the user may have instantiations in many logical domains beside the source. These instantiations of the logical
buffer are called physical buffers.

Internally, the hStreams framework has the implicit dependency management. By default, a task enqueued in a stream depends on
the previous task in this stream and on all the buffers used by this task, but does not depend on memory transfers of buffers not
related to the previous task. The dependencies can also be controlled explicitly by the application. For example, the application can
wait for completion of one or more previously defined events. Such a dependency management allows programmers to hide com-
munication behind computation.

The hStreams library provides two levels of API – the higher level app API and the lower level core API. The first one is dedicated

Fig. 2. Source and sink for platform with host CPU and two MICs.

Fig. 3. An example of configuration of domains and streams.
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to novice users, and offers only a part of hStreams functionality. Its productivity is boosted by helper functions and common building
blocks. The core API is addressed for more advanced programmers, and offers the full functionality of hStreams. Currently, the library
provides support for Intel Xeon CPUs, and the first generation of Intel Xeon Phi accelerators.

4. Numerical modeling of solidification

4.1. Numerical model

In the numerical modeling problem studied in the paper, a binary alloy of Ni-Cu is considered as a system of the ideal metal
mixture in liquid and solid phases. The numerical model [50] refers to the dendritic solidification process in the isothermal conditions
with constant diffusivity coefficients for both phases. It allows us to use the field-phase method defined by Warren and Boettinger
[50]. In the model, the growth of microstructure during the solidification is determined by solving a system of two PDEs. The first
equation defines the phase content ϕ:
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where: Mϕ is defined as the solid/liquid interface mobility, ε is a parameter related to the interface width, η is the anisotropy factor,
HA and HB denotes the free energy of both components, cor is the stochastic factor which models thermodynamic fluctuations near the
dendrite tip. The coefficient θ is calculated as follows:
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The second equation defines the concentration c of the alloy dopant, which is one of the components of the alloy:
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where: Dc is the diffusion coefficient, Vm is the specific volume, R is the gas constant.
In this model, the generalized finite difference method [2,22] is used to obtain the values of partial derivatives in Eqs. (1) and (2).

In order to parallelize computations with a desired accuracy, the explicit scheme is applied with a small value of the time step
= −t eΔ 1 7 s. The resulting computations [44] belong to the group of forward-in-time, iterative algorithms since all the calculations

performed in the current time step +t 1 depend on results determined in the previous step t. The application code consists of two
main blocks of computations, which are responsible for determining either the phase content ϕ or the dopant concentration c. In the
model, the values of ϕ and c are determined for nodes distributed across a considered domain (Fig. 4). For this aim, the values of
derivatives in all the nodes have to be calculated at every time step. In our previous work [44], two different cases were introduced –
with either the static or dynamic intensity of computations. In the first case, the workload of CPUs and coprocessors is constant during

Fig. 4. Phase content for the simulated time = × −t 2.75 10 s3 (original code).
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the application execution, since a constant number of equations is solved. This assumption corresponds to modeling problems in
which the variability of solidification phenomena in the whole domain has to be considered. In the second case, the model is able to
solve differential equations only in part of nodes. The use of a suitable selection criterion allows reducing significantly the amount of
computations. The consequence is a significant workload imbalance between CPU and MIC devices, since the selection criterion is
calculated after the partitioning of nodes between devices. In our future work, we plan to develop an efficient algorithm for the
dynamic load balancing in this case.

4.2. Original code of the solidification application

Fig. 5 illustrates the computational core of the original CPU code implementing the numerical model of solidification, for a single
time step. The original code corresponds to the generalized FDM, and allows the partial differential equations to be solved not only
for regular, but also irregular grids. All the computations are organized based on one-dimensional array containing elements of the
grid. Data related to a certain element are encapsulated in the object Grid->node[i]. This organization of data enforces the
memory management according to the array of structures (AoS) layout.

The computational core of the application represents two loops, where the outer and inner loops iterate over nodes of the grid and
neighbors of each node, respectively. The inner loop relates to stencil computations used for determination of partial derivatives. For
a given node Grid->node[i], the indices Grid->node[i].e[j] of its neighbours are stored in a configuration file describing the
whole grid. As a result, the patterns of all 20 stencils are determined at runtime. The structure of the application core allows its
parallelization using omp parallel for directive of OpenMP for the outer loop.

For the studied version of the application, a 2D regular grid is used with nodes distributed uniformly across a square domain. To
provide a required accuracy, 2000 nodes along each dimension are chosen as perfectly sufficient. In practice, computations are
interleaved with writing partial results to the file. In the original version of the code, parallel computations are performed on CPUs for
a sequence of time steps, when partial results are written to the file after the first, and then after every package of a selected number R
of time steps (R = 2000 was specified in the studied case). This scheme (Fig. 6) permits us to observe and evaluate the grain growth
during the simulation.

5. Approach to adapting the solidification application to hybrid CPU–MIC platforms

This section outlines an approach to adapting the solidification application to hybrid CPU–MIC platforms that can consist of more

Fig. 5. Snippet of the original OpenMP code corresponding to one of 20 stencils.

Fig. 6. Original version of the solidification application [44].
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than one coprocessor. The goal is a significant reduction of the excessive execution time achieved with the original code (about 10 or
5 h for respectively static and dynamic intensity, as shown in Section 7). We propose to use both MIC and CPU devices for executing
parallel workloads of the computational core of the application, while the rest of application is executed using CPUs only, including
writing outcomes to the file. Such a solution allows the efficient utilization of resources, but requires flexible methods for workload
distribution between CPUs and coprocessors. Another important assumption is avoiding significant modifications of the code. In
particular, since OpenMP is used in the original code for CPUs, the same environment is applied in our development to parallelize
computations on CPUs and coprocessors. Also, we do not provide any improvements for writing data to the file.

The idea [44] of adapting the solidification application to a CPU–MIC platform with two coprocessors is presented in Fig. 7. While
both coprocessors and CPUs are responsible for executing the computational core of the application, writing data to the file is
responsibility of CPU only. A critical performance challenge is to overlap all the computations with writing results to the file. Since a
CPU performs both computations and writing data to the file, CPU threads are partitioned into two work teams. More precisely, the
second team, containing a single thread, is responsible for writing results to the file, while the first team is utilized for the execution of
calculations on CPUs, and management of computations for coprocessors. This solution allows us to simultaneously perform parallel
computations using all the available devices, and writing data to the file.

In consequence, at the beginning of computations, the input data are transferred to coprocessors, which afterwards start com-
putations for the first time step, together with the first CPU work team. After finishing the workloads assigned to both coprocessors,
the results are returned to the main memory. During these transfers, the first CPU work team finishes computations for the first time
step. Then the first CPU work team and coprocessors start computations for the next time step. Simultaneously, the second CPU work
team starts writing results from the main memory to the file. In general, writing results obtained after finishing package of R time
steps is overlapped with computations performed for the next package.

The next subsections present a sequence of steps required for adaptation of the studied application to CPU–MIC hybrid platforms,
namely:

1. transformation of data layout;
2. partitioning of computations and optimizations of data movements;
3. load balancing of workloads between devices;
4. parallelization of computations across threads;
5. vectorization.

This sequence allows us to minimize the amount of data transfers, as well as to overlap the following operations: 1) computation,
2) inter-device communication, and 3) writing outcomes to the file. Also, it becomes possible to achieve the flexible load balancing of
workloads between devices, and to optimize the utilization of resources of devices.

An issue of primary importance is also providing the numerical accuracy of computations, taking into account differences in
architectures of Intel coprocessors and Intel Xeon CPUs. Following our previous paper [44], the accuracy of simulation results is
evaluated experimentally for all the versions of code, considering both the phase content ϕ and concentration c. As in the case of work
[44], this evaluation shows negligible differences of results between the original CPU code and each of the developed hybrid codes.
What is important these differences are not cumulative, and they do not grow during the simulation.

Fig. 7. Idea of adaptation of the solidification application to hybrid CPU–MIC platforms [44].
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5.1. Transformation of data layout

The memory organization is very important for optimization of the overall performance. The basic solution is to ensure the linear
access to data. In practice, there are two major choices for the memory arrangement: Array of Structures (AoS) or Structures of Arrays
(SoA). The original version of the application uses the AoS option. To provide a contiguous access to memory, data structures are
transformed to the SoA layout, at the initialization phase. This conversion also permits us to avoid copying some unnecessary data.

5.2. Partitioning of computations and optimizations of data movements

A computing platform (see Fig. 1) is viewed as consisting of three components: 1) CPUs with ccNUMA architecture, 2) the first
coprocessor MIC0, and 3) the second coprocessor MIC1. In consequence, all the computations in the original code will be partitioned
along the index i of the outer loop (see Fig. 5) into three parts that correspond to grid subdomains, in a proportion that takes into
account performances of components (see the next subsection). Due to data dependencies between grid nodes, some data have to be
exchanged between platform components after every time step. Since coprocessors are utilized in the offload mode, all the exchanges
are carried out through the PCIe bus and host memory.

To optimize the performance of data exchanges, we transfer (Fig. 8) only data that correspond to halo regions of grid subdomains
[53], with asynchronous data transfers used to overlap data movements with computations. Moreover, to reduce overheads of data
transfers between components, it was proposed [44] to assign the first subdomain to MIC0, the second subdomain – to CPUs, and the
last one – to MIC1. This assignment reduces communication costs in comparison with the assignment of the adjacent subdomains to
two MICs. Finally, to decrease significantly the performance overheads due to memory allocations, data within the coprocessor
memory are allocated only once at the beginning of computations, and then reused many times.

5.3. Load balancing of workloads for CPU and MIC devices

In the case of the static computation intensity, the optimal load balancing between the three subdomains defined in the previous
subsection can be determined in an empirical way, for a fixed problem size. Initially, computations are partitioned uniformly along
rows of the grid. Based on measurements of the execution time for each part, a redistribution of computations is then performed. The
redistribution is finished when the execution times for all the three subdomains (MIC0, CPU, MIC1) are the same, with a given
accuracy. In consequence, the partitioning determined in this way provides the required load balancing for the successive execution
of the application.

5.4. Parallelization of computations across threads

Like the original version, the basic work-sharing directive omp parallel for is used in a new code to assign computations to
available threads, for both CPUs and coprocessors. To ensure the best overall performance, different setups for the scheduling clause
of this directive have to be evaluated for different devices, including static, dynamic, and guided, with different sizes of chunks.
Regarding CPUs and MICs, the important difference between them is that while all cores/threads of MICs are involved in compu-
tations only, at least one CPU core is loaded by the management of coprocessors as well.

5.5. Vectorization

An important step for performance optimization is utilization of capabilities of vector processing units available in CPUs and
coprocessors. The most convenient way to reach this goal is the compiler-based automatic vectorization. The automatic vectorization
is provided by the Intel compiler that automatically uses SIMD instructions available in the Intel Streaming SIMD Extensions such as
AVX [37,49]. Usually the Intel compiler generates packed SIMD instructions through unrolling the innermost loop.

In the studied case, however, the compiler cannot vectorize the innermost loops safely because of features of calculations and data
dependencies. In fact, the computations performed by the innermost loops require input data with dynamically determined indices. In

Fig. 8. Scheme of communication between CPUs and two KNC coprocessors.
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this case, the automatic vectorization fails due to the irregular data access, unpredictable during the compilation. To resolve this
problem, it was proposed [44,45] to change the source code slightly by adding temporary buffers responsible for loading the required
data from the irregular memory regions. Also, appropriate keywords and directives should be included as compiler hints, in order to
increase the auto-vectorization efficiency. The auto-vectorization is also assisted with providing appropriate data alignments for the
vectorized data. This forces the compiler to create data structures in memory aligned to specific byte boundaries.

Remark 1. Two of these steps, namely, the transformation of data layout and vectorization can be successfully used to optimize the
performance of the original OpenMP code executed on CPUs only. In order to overlap computations with writing data to the file, CPU
threads have to be partitioned into two work teams as well.

6. Adaptation of the proposed approach to different heterogeneous programing environments

This section outlines evaluation of four programming environments used to implement the approach proposed in the previous
section. The evaluated environments include: Intel Offload coupled with OpenMP, OpenMP 4.0 and OpenMP 4.5 Accelerator Models,
and hStreams with OpenMP. They correspond to four different versions of code in Table 1. Among the considered aspects which
differentiate these environments are:

1. Management of coprocessors;
2. Way of separation of computations and writing results to the file;
3. Mechanisms used for synchronization between: (a) CPU devices (CPU and MICs), (b) CPU work teams responsible for compu-

tations and writing results to the file;
4. Way of parallelizing the workloads executed within CPUs and coprocessors, including the number of CPU cores available for

parallel computations.

While the first aspect corresponds to mechanisms which enable offloading data and computations to coprocessors, the next one
refers to methods used for partitioning of CPU threads into work teams. The third aspect addresses mechanisms utilized for both the
inter- and intra-device synchronization, while the last aspect corresponds to ways of using available cores/threads to perform
computations in parallel.

6.1. Intel Offload with OpenMP

Mapping the application workloads shown in Fig. 7 onto the programming environment which combines Intel Offload and
OpenMP is rather straightforward. This version takes advantages of the asynchronous execution model of Intel Offload to ensure
overlapping parallel workloads executed by CPUs with data transfers and computations performed by coprocessors. In practice,
offload target directive with signal clause is used to initialize the asynchronous execution of these activities. Moreover, the man-
agement of coprocessors is assigned to the master thread of that CPU work team which is responsible for parallel computations. Since
one CPU core is engaged in writing outcomes to the file, −n( 1) CPU cores are finally available for computations, where n is the total
number of CPU cores.

To separate parallel computations and writing results to the file, all CPU threads/cores are partitioned into two work teams. For
this aim, a custom solution is implemented based on the nested parallelism provided by OpenMP (Listing 4). This allows us to create
two threads initially (line 5), and then the first of them spawns threads assigned to parallel computations (line 9). In order to avoid
assignment of two or more threads to the same core, the required thread affinity is adjusted manually (lines 11–16), using cpu_set_t
data structure to define the bit mask of CPU cores.

The nested parallelism allows increasing the overall performance by hiding writing outcomes to the file behind parallel com-
putations. In addition, an appropriate synchronization of work teams is required to ensure the correctness of computations. Since

Table 1
Comparison of different versions of the application code.

Version of
code

Management of
coprocessors

Separation of writing
results and computations

Synchronization Parallel computations

Devices CPU teams CPU MIC

A Intel Offload OpenMP nested
parallelism with teams

Offload mechanisms Custom OpenMP parallel for
−n( 1) cores

OpenMP
parallel for

B OpenMP 4.0 AM OpenMP task parallelism OpenMP taskgroup OpenMP taskgroup OpenMP task
parallelism −n( 3)
cores

OpenMP
parallel for

C OpenMP 4.0 AM OpenMP nested
parallelism with teams

OpenMP mechanisms Custom OpenMP parallel for
−n( 1) cores

OpenMP
parallel for

D hStreams Streams of hStreams hStreams active
synchronization

hStreams active
synchronization

OpenMP parallel for
−n( 2) cores

OpenMP
parallel for
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OpenMP does not provide the synchronization of nested regions, a custom synchronization mechanism based on critical directive of
OpenMP is used to assure the team synchronization, while the synchronization of devices is implemented through the mechanism
offered by Intel Offload.

To parallelize computations performed by CPUs and coprocessors, the work-sharing construction omp parallel for is used. Since
the master thread of the first CPU team is utilized for both computations and management of coprocessors, an appropriate scheduling
of loop iterations is vital to optimize the overall performance. The static scheduling generates performance overheads since the rest of
threads in this team have to wait for the master. To resolve this problem, we use the dynamic scheduling of loop iterations. As a
result, after offloading data and computations to coprocessors, the master thread joins the rest of threads performing computations.
This solution enables hiding the management of coprocessors behind parallel computations performed by CPUs. At the same time, it
was evaluated experimentally that the static scheduling is the most efficient way for splitting loop iterations among threads in
coprocessors. Such a mixture of static and dynamic scheduling is also chosen for other programming models evaluated in this paper.

6.2. OpenMP 4.0 Accelerator Model

In this case, we assume that only mechanisms offered by the OpenMP Accelerator Model are used to implement the application
workloads shown in Fig. 7. As compared to the previous solutions, this version differs in all the aspects, except for the way of
parallelizing computations in coprocessors. The idea of mapping the application workloads onto the OpenMP 4.0 Accelerator Model
is illustrated in Fig. 9.

To offload data and computations to coprocessors, this version uses a mixture of three basic constructions: target, target update,
and target data. While the first two ones are responsible for oflloading computations and data to coprocessors, the last one is used to
keep data in the coprocessor memory between executing the offloaded regions. Since version 4.0 of OpenMP does not provide
mechanisms for the asynchronous execution of target and target update directives, we propose to use the OpenMP task parallelism
for the asynchronous management of coprocessors. The task parallelism is also utilized to perform CPU computations and write
results to the file simultaneously.

Following the scheme shown in Fig. 9, there are n tasks spawned on different CPU cores. One of these tasks is engaged in writing
results to the file, while the next two tasks are responsible for offloading computations and data to coprocessors. The rest of tasks
correspond to computations performed by CPUs.

Version 4.0 of OpenMP does not provide a solution for the automatic partitioning of loop iterations among tasks. Thus, in the case
of CPUs, we have to split loops manually into equal blocks of the size determined by the total amount of iterations divided by the
number of tasks engaged in computations. At the same time, utilizing omp parallel for directive with the static scheduling is enough
for parallelizing computations in coprocessors, where is no need to apply the task parallelism.

The usage of task parallelism to implement the OpenMP 4.0 Accelerator Model is coupled with providing an adequate task syn-
chronization. For this aim, omp taskgroup construct is applied, in order to provide two scenarios of synchronization. The first scenario is
used to synchronize CPUs and coprocessors after every time step. The second one is required after every package of R time steps, and is
responsible for synchronizing computations and writing results to the file. The idea of task synchronization is illustrated in Listing 5.

6.3. OpenMP 4.5 Accelerator Model

The asynchronous execution is the key feature of the OpenMP 4.5 Accelerator Model as compared with OpenMP 4.0. This feature
allows us to implement the solidification application quite similar to the version based on Intel Offload. In practice, target and target
update directives with nowait clause are used to ensuring the asynchronous execution of computations and data exchanges. The
difference against Intel Offload is the scenario of management of coprocessors. Instead of initializing the asynchronous execution of
an offloaded region during CPU computations, now the asynchronous activity is initialized first, and only then CPU threads start the
workload execution. Some performance overheads are disadvantage of such a scenario.

Listing 4. Partitioning CPUs threads into two work teams.
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The similarities between these two versions concern also the way how to separate parallel computations and writing results to the
file. As before, CPU threads are partitioned into two work teams using the OpenMP nested parallelism. Also, the synchronization of
work teams is performed in the same way, based on critical directive.

6.4. Hetero Streams Library with OpenMP

The hStreams library supports the asynchronous task parallelism on hybrid platforms by providing multiple streams that are
mapped onto different computing domains (devices). This advantage is successfully used for adapting the solidification application to
hybrid platform with more than one KNC coprocessor. Thus, it is natural to use hStreams for the flexible management of computing
devices, while the usage of OpenMP is limited only to harnessing the resources of cores within devices.

The idea of mapping the application onto heterogeneous streams is shown in Fig. 10. Four logical streams are created within three
logical domains. Here Stream_4 is used for writing results to the file, and Stream_3 is utlized for parallel computations on CPUs. The
remaining streams are responsible for parallel computations and data exchanges performed by coprocessors. The streams are assigned

Fig. 9. Mapping the application workloads onto OpenMP 4.0 Accelerator Model.

Listing 5. Scheme of task synchronization.
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to the devices as follows: Stream_1 and Stream_2 are executed by coprocessors, while Stream_3 and Stream_4 are assigned to CPUs.
The creation of two streams on the CPU side allows us to overlap computations with writing results to the file. These two streams are
created using Core API.

To parallelize computations within the streams, we use omp parallel for directive. As two CPU cores are dedicated to running the
source process of hStreams and writing data to the file, −n( 2) CPU cores are used for computations directly.

The studied application enforces some inter-stream dependencies. Therefore, providing the required synchronization of streams in
an efficient way is vital for the correctness and performance of the application. The hStreams library supplies two ways to achieve this
goal. They correspond to various methods of filling the queues. The first way assumes that the FIFO queue is filled before the
execution of a stream, while in the second case the FIFO queue is filled during the stream execution. For both ways, the source is
responsible for managing the streams. Specifically, in the first case, the synchronization of streams is based on completion the events
that are placed into streams before the task execution. For the second way, called the active synchronization, the source puts the tasks
into streams, then waits for their completion. In our case, the second way is chosen as more efficient to provide the synchronization of
computations after every time step. Additionally, all the streams have to be synchronized after completing a package of R time steps,
in order to overlap computations with writing outcomes to the file correctly.

The efficient management of memory buffers is another important issue when mapping the application onto heterogeneous
streams. By default, the memory is allocated within all the existing logical domains. Although in many cases logical domains are
mapped to the same physical domain, each of them is equipped with own set of logical buffers. The undesirable consequence are
explicit data transfers between them. To resolve this issue, we use the mechanism known as aliased buffers, provided by Core API. It
guarantees that logical domains which belong to one physical domain share memory resources. As a result, all these domains will use
the same logical buffers. This allows optimizing the data exchange, especially for applications which includes more logical domains.
An example of using this technique is shown in Listing 6. Here HSTR_BUFFER_PROPS is a data structure that allows defining the
properties of buffers, while hStreams_Alloc1DEx function is responsible for allocating memory. In consequence, the buffers A and
B are shared among all the logical domains within the same physical domain.

We propose to use aliased buffers on the CPU side. By default, during computations for a package of R time steps it is necessary to
exchange data between the source and the streams used for parallel computations. In every time step, data are transferred from the
source to streams at the beginning of computations, and back to the source after their completion. Then after finishing the execution

Fig. 10. Mapping the application workload onto heterogeneous streams.

Listing 6. Initialization of aliased buffers.
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of every package of R steps, data are transferred from the source to Stream_4. Although Stream_3, Stream_4 and the source are placed
in the same physical domain, data movements generate significant performance overheads. Utilizing aliased buffers guarantees that
all the streams of CPUs and the source share the same memory regions. As a result, the total amount of data transfers is significantly
reduced, since now data are transferred only between the source and the streams mapped to coprocessors.

7. Benchmarking heterogeneous programming environments on hybrid CPU–KNC platform

7.1. Performance results

In this subsection, we present the performance results obtained for the double precision floating-point format. The specifications
of Intel Xeon CPUs (with Haswell microarchitecture) and KNC coprocessors used in our experiments are presented in Table 2. All the
tests are compiled using the Intel icpc compiler (ver. 17.0.0) with the optimization flag -O3, and executed on Red Hat 3.8, and Intel
MPSS 3.7.2. The benchmarks are performed for the 2D grid containing 4,000,000 nodes (2000 nodes along each dimension x and y)
and 110,000 time steps. Table 3 presents values of the total execution time achieved for the four versions of code, assuming both the
static and dynamic intensity of computation. To ensure the reliability of performance results, the measurements of the execution time
are repeated =r 10 times, and the median values are used finally. The statistical properties of measurements are controlled by
calculating the relative standard deviation (RSD) for each set of r measurements. Also, all the experiments have been repeated after
some time to check the reproducibility of results. It is worth noting that the tested platform is located in the professional data center
with stable environmental conditions [29].

The proposed general scheme of workload distribution (Fig. 7) enables the flexible usage of various configurations of devices to
perform computations. In the tests, the following configurations of computing resources are studied:

1. single KNC coprocessor,
2. two KNC coprocessors,
3. two Intel Xeon CPUs and single coprocessor,
4. two Intel Xeon CPUs and two coprocessors.

In addition, a pure OpenMP code is executed on the homogeneous configuration with two CPUs, providing the reference per-
formance. The hints described in Remark 1 from Section 5 have been used to optimize this code.

Table 2
Specification of the tested platform with KNC coprocessors [29].

Device type CPUs KNCs
Number of devices 2 2

Name of each Intel Xeon Intel Xeon
device E5-2699 v3 Phi 7120P
Number of cores 18 61
Number of threads 36 244
SIMD width [bits] 256 512
Base freq. [GHz] 2.3 1.238
AVX freq. [GHz] 1.9 1.238
AVX peak [Gflop/s] 547.2 1208.3
Scalar peak [Gflop/s] 331.2 151.0
LLC* size [MB] 45 30.5
Memory size 256GB DDR4 16GB GDDR5
Memory bandwidth [GB/s]

* LLC (Last Level Cache) refers to aggregated L2 caches for Intel Xeon Phi and L3 cache for CPU.

Table 3
Total execution time (in seconds) measured for different versions of the application, and various platform configurations, both for the static (S) and
dynamic (D) intensity of computations. The statistical properties of measurements are given by RSD less than 2.4%, and the average value of RSD for
various hardware configurations with KNC equal to 1.06%, 0.80%, 1.08%, and 1.40% (static intensity), as well as RSD less than 2.9%, and the
average RSD for various hardware configuration with KNC equal to 2.10%, 1.04%, 0.87%, and 1.63% (dynamic intensity).

Code version 1 × KNC 2 × KNC 2 × CPU + 1 × KNC 2 × CPU + 2 × KNC 2 × CPU

S D S D S D S D S D

A 11,131 5528 5609 2808 4718 2114 3409 1650 7764(RSD= 0.85%) 2922 (RSD= 1.35%)
B 11,439 5801 10,878 6429 12,258 6100 10,643 4908
C 11,395 5798 5697 2904 4982 2325 3992 1744
D 10,911 5201 5730 2810 4729 2203 3585 1791

Remark: For the original code, the execution time on 2×CPUs was 38,492 and 16,072 s for the static and dynamic intensity, respectively.
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For hybrid CPU–KNC configurations, the presented values of the execution time are achieved for load balancing setups shown in
Table 4. For example, the setup of 43.8 : 28.02 : 28.18 for the configuration with two CPUs and two MICs means that 43.8% of grid
nodes are processed by CPUs, while respectively 28.02% and 28.18% of nodes are assigned to MIC0 and MIC1.

To optimize the performance of computations, we evaluate experimentally various setups for the scheduling clause of omp
parallel for directive. As already mentioned, the best performance is achieved for the static scheduling on coprocessors (4 threads per
core), and dynamic one on CPUs. In both cases, the optimal size of chunks is selected as 128.

For the static computation intensity, the analysis of Table 3 allows us to conclude that all the versions give quite similar per-
formance results only for a single KNC. Already for two KNCs, the OpenMP 4.0 version yields a radically worse performance then
others, providing only a small improvement in comparison with a single MIC. As resources expand and a true hybrid CPU–KNC
platform is used, the total execution time of this version is even increased with each additional coprocessor. At the same time, the rest
of versions are able to adapt to expansion of available resources, however, not with the same efficiency (see Table 5). In particular, for
the version A, two KNCs allows us to accelerate the applications 1.39 times against two CPUs. Furthermore, the hybrid platform with
2 CPUs and a single KNC gives the speedup of 1.63x, while the most advanced configuration with two CPUs and two KNCs yields the
speedup of 2.28x. For the versions C and D, the achieved speedups are respectively: 1.36x, 1.56x and 1.94x for the version C, and
1.35x, 1.64x and 2.16x for the version D. These values of the speedup SCPU are calculated against the execution time obtained on two
CPUs. At the same time, the last two column of Table 5 includes values of the speedup SKNC achieved against the configuration with
two coprocessors, for a given version of code. Thus for the versions A, C, and D of the application with the static computation
intensity, the utilization of two CPUs together with two KNCs allows accelerating the application 1.65, 1.43, and 1.60 times, re-
spectively, in comparison with only two KNCs.

As a rule of thumb, the achieved values of SCPU and SKNC can be explained based on the peak performance P of the considered
configurations. For example, the speedup SCPU of the most advanced hybrid configuration against two CPUs is less than 2.28, while
the ratio = = +× + × ×R P P/ (2*547.2 2 * 1208.3)/(2 * 547.2)KNC CPU CPU1 2 2 2 is about 3.2. The difference is the result of such factors as low
performance of KNC for non-vectorized computations, higer overheads for communication between coprocessors than between CPUs,
etc. These factors are also the reason that the speedup =S 1.65KNC is higher in this case than the ratio

= =× + × ×R P P/ 1.45KNC CPU KNC2 2 2 2 .

Remark 2. The peak performance of Haswell CPUs given in Table 2 corresponds to the base frequency of AVX vector instructions.
The tested platform utilize the Intel Turbo Boost Technology 2.0 [38], which automatically allows CPU cores to run faster than the
base frequencies if they are operating below power, current and temperature limits. In fact, the AVX turbo frequency f *AVX of the Intel
Xeon E5-2699v3 CPU can change in the range between 1.9GHz and 2.6GHz. As a result, the estimations of ratios R1 and R2 will also
change. For example, assuming =f * 2.3AVX GHz, we obtain =R 2.821 and =R 1.542 .

Going to the case of the dynamic computation intensity, it can be concluded that except for OpenMP 4.0 the rest of the studied
versions are also able to adapt to expansion of resources. At the same time, by comparing values of the speedup SCPU for the static and
dynamic intensity, we conclude that the efficiency of using coprocessors in hybrid configurations is considerably lower in the second
case. For example, when utilizing the configuration with two KNCs and two CPUs to execute the Intel Offload version for the dynamic
intensity of computations, we obtain the acceleration of =S x1.77CPU , instead of =S x2.28CPU in the case of the static intensity.

Remark 3. Below Table 3, we present the total execution times achieved by the original, non-optimized OpenMP code on two CPUs,

Table 4
Load balancing setups (in %) for different CPU–MIC configurations.

Code version 2 × CPU + 1 × KNC 2 × CPU + 2 × KNC

S D S D

A 61.5 : 38.5 60 : 40 43.8 : 28.02 : 28.18 38 : 31 : 31
B 60 : 40 58 : 42 44.5 : 27.6 : 27.9 34 : 33 : 33
C 60 : 40 58 : 42 44.5 : 27.6 : 27.9 34 : 33 : 33
D 61.2 38.8 60 : 40 44.9 : 27.5 : 27.6 34 : 33 : 33

Table 5
Speedups achieved for different versions of the applications, where SCPU and SKNC refer to speedups achieved against configurations with two CPUS
and two KNC coprocessors, respectively.

Version of code 2 × KNC 2 × CPU + 1 × KNC 2 × CPU + 2 × KNC

SCPU SCPU SCPU SKNC

S D S D S D S D

A 1.39 1.04 1.64 1.38 2.28 1.77 1.65 1.70
B 0.71 0.45 0.63 0.48 0.73 0.59 1.02 1.30
C 1.36 1.01 1.56 1.26 1.94 1.67 1.43 1.67
D 1.35 1.04 1.64 1.33 2.16 1.63 1.60 1.57
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both for the static and dynamic intensity of computations. These values of about 10.5 and 4.5 h were the starting point of our
development, that was originally aimed at accelerating the application by using KNC coprocessors [45]. The hidden bonus of this
development was the possibility of using some of the proposed optimizations to speed up the original code when executed on CPUs
only (see Remark 1). The result was decreasing the execution time on two CPUs to less than 2 h 10 min for the statics intensity, and
less than 50 min for the dynamic intensity. Finally, using the most advanced hybrid configuration we are able to execute the
application in less than respectively 57 and 28 min, that corresponds to the overall acceleration of about 11.3x and 9.7x, respectively.

7.2. Discussion: performance optimization issues

Affinization of cores/threads
To identify the reasons for the poor performance of the OpenMP 4.0 version, its execution has been analyzed in details. The

conclusion is that the main reason are issues related to the affinization of threads on the CPU side.
In fact, the OpenMP standard does not provide a mechanism which enables us to define the affinity for tasks. As a result, OpenMP

tasks are executed by different threads in each time step. In particular, this relates to tasks responsible for offloading computations
and data to coprocessors (see Fig. 9); these tasks migrate between CPU threads in successive time steps. As a result, coprocessor
threads are created in each time step, that generates prohibitive performance overheads. As creating a KNC thread takes a rather long
time, the execution of a single time step by KNC takes up to 10 times longer than in the other three versions. For these versions, the
affinization of CPU threads (see Listing 4) allows us to avoid the migration of threads responsible for offloading computations and
data to coprocessors. In consequence, the performance overheads due to the creation of these threads are observed only in the first
time step, and once created they are reused in the subsequent steps.

Only when parallel computations are performed by a single coprocessor, this performance bottleneck of OpenMP 4.0 is not
observed. In this case, only two tasks are created on the CPU side: 1) offloading computations to the accelerator, for a package of R
time steps, and 2) writing results to the file. These tasks are activated inside the parallel region of OpenMP by the master thread. As a
result, each of the tasks is always executed by the same thread, for a package of R time steps.

Double buffering for CPUs
Another factor influencing the overall performance is organization of memory buffers for CPUs. The evaluated codes use two sets

of data buffers on the CPU side. In this double buffering solution, first set is utilized for parallel computations performed by CPUs,
while the second one is responsible for exchanging data with accelerators. At the beginning and end of each time step, data cor-
responding to halo regions of grid subdomains have to be copied between these sets. Such a solution enables us to fully overlap CPU
computations with transferring data to/from coprocessors, as shown in Fig. 7. Using a single set of buffers enforces performing CPU
computations and data exchanges sequentially. Due to this overhead, the performance of CPU computations is about 20% lower in
this case.

7.3. Observations on productivity of software development

Scientists are finding it increasingly costly and time consuming to write, port, or rewrite their software to take advantage of new
architectures [8]. While the machine performance remains the main driver for HPC applications, the cost (or productivity) of software
development becomes a critical bottleneck preventing a wider adoption of the HPC technology. Effective parallelism is difficult to achieve in
heterogeneous platforms. If these efforts were more reasonable, more people would tune their codes to achieve efficient performance [34].

One key to improve the productivity of programming in HPC environments is increasing the level of abstraction for the code
development. This direction is especially significant for hybrid platforms because of their highly heterogeneous and complex nature.
A streaming abstraction is one of several compelling choices for mapping task parallelism to heterogeneous platforms [34]. The
hStreams library studied in this paper is based on this high-level abstraction. This framework is aimed at making it easier to port and
tune task-parallel codes.

The experience gained in this study highlights separation of concerns as the main feature of hStreams which contributes to making
porting and tuning a real-life application simpler. This feature allows a separation of concerns between 1) the expression of functional
semantics and exposure of task parallelism, and 2) the hardware-aware performance tuning and control over mapping workloads
onto a platform [34]. As a result, while creators of scientific algorithms receive an intuitive tool, code tuners may work long after
them, having the freedom to control over the code details without the need for application domain expertise. For the studied
application, such a separation is distinctly demonstrated in Fig. 10, which shows that the usage of the stream abstraction provides the
high-level exposure of parallelism, where each of streams encapsulates a clear functional semantics. Furthermore, Table 1 shows
another advantage of hStreams. Opposite to other versions, the hStreams framework delivers ready-to-use constructions for all the
aspects of control over mapping the application workloads to CPU–KNC platforms: 1) management of coprocessors, 2) separation of
computations and writing results to the file, as well as 3) inter- and 4) intra-device synchronizations.

From the practical point of view, the important merit of hStreams is the independence of the compiler version, since hStreams is a
library-based API extension, while Intel Offload and OpenMP are compiler-supported language extensions. In the later case, the
actual behavior of the application code during its compilation and execution may change considerably along with changing the
compiler version. For this study, we observed such problems with Intel Offload when we had to move from version 15.0.2 of the Intel
icpc compiler to version 17.0.0, in order to provide support for OpenMP 4.5.
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The described advantages of the high-level hStreams framework in easier code development are achieved at low performance
overheads in comparison with the low-level Intel Offload solution, which gives the shortest execution time for hybrid CPU–KNC
configurations. Following Table 3, these overheads are less than 5% and 9% for the static and dynamic intensity of computations,
respectively.

8. Benchmarking the solidification application on platform with KNL processors

8.1. Adapting the application to CPU–KNL platforms

The second generation of Intel Xeon Phi introduces many improvements over the first one [20,25]. The KNL processor is com-
posed of up to 72 cores based on the Silvermont (Atom) microarchitecture. They are organized into tiles connected by the 2D mesh
topology with improved on-package latency. Each tile consists of two cores (two vector processing units per core), and 1MB L2 cache
shared between two cores in tile. The caches are connected to each other with a mesh, and are kept coherent with the MESIF protocol.
KNL is equipped with the new vector instruction set – AVX-512. Each vector processing unit (VPU) operates independently on 512-bit
vector registers, which support up to eight double-precision FMA operations. KNL cores utilize multithreading to allow running four
threads per core, and are binary compatible with prior Intel CPUs.

KNL has two types of memory: on-package high-bandwidth memory (HBM) based on MCDRAM technology (16 GB), and large
capacity DDR4 (up to 384GB). The HBM memory can be configure in one of three modes: cache (MCDRAM works as a cache for
DDR4), flat (HBM is addressable memory in the same address space as DDR4), and hybrid [25].

The KNL architecture has a theoretical peak performance of about 3 TFLOP/s in double precision, which is about three times
higher than what KNC provides. This performance gain is partly due to the presence of two VPUs per core, doubled compared to the
previous generation. KNL devices are delivered as standalone processors designed for massively parallel workloads. Fig. 11 illustrates
a hybrid CPU–KNL platform, where KNL accelerators are connected to CPU via the HPC fabric using either the proprietary Intel Omni-
Path Architecture (OPA) interconnect [3] or Infiniband. Table 6 presents specifications of Intel Xeon CPUs (with Broadwell micro-
architecture) and KNL processors used in our research. The suffix F in the Intel Xeon Phi model number (7250F) denotes the OPA
fabric integrated with KNL devices.

The solidification modeling application can be adapted to platforms with KNL processors by using the Offload over Fabric (OoF)
technology [16,30]. Among the programming environments studied in this paper, only Intel Offload and OpenMP Accelerator Model
supports this technology at the moment. To our best knowledge, there are no implementation of hStreams for the OoF technology. For
OpenMP 4.5 and Intel Offload, the adaptation of codes developed for the first generation of the MIC architecture to the second generation
is almost straightforward by recompiling the source codes with the flags -O3 and -qoffload-arch=mic-avx512. Furthermore, KNL
accelerators are used in the quadrant clustering mode [20], with the MCDRAM memory configured in the flat mode.

However, after discovering high performance overheads for the scenario when CPUs offload computations to KNL processors and
concurrently execute parallel workloads, we have decided to release CPUs from executing the computational core of the application,

Fig. 11. Hybrid CPU–KNL platform.
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and study the possibilities of accelerating the application by expanding the number of KNLs as much as possible. Due to properties of
our testbed, CPU is responsible as before for writing partial results to the file.

The proposed general scheme of workload distribution (Fig. 6) allows flexible expanding the number of MIC devices. In the case of
the first generation of the MIC architecture, the tested platform permits us to use no more then two KNCs. Now it is possible to utilize
up to 8 KNL processors. At the same time, using more than two KNLs requires the exchange of halo regions corresponding to both
borders of grid subdomains assigned to MIC devices (Fig. 12), while for the CPU–KNC platform it was enough to exchange halo
regions for a single border. As shown in Fig. 12, KNL1 has to receive data corresponding to the bottom border of KNL0, and the top
border of KNL2, etc. As before, these data are exchanged through the CPU memory. The communication is implemented using the
asynchronous mechanisms of data transfers available in Intel Offload and OpenMP 4.5 Accelerator Model.

When adapting the application to CPU–KNL platforms, we manage MIC devices in the same way as in the case of KNC copro-
cessors. As before, a single CPU thread is responsible for transferring data and computations between CPU and MIC devices. This
interaction is implemented using asynchronous mechanisms supported by both environments. A noticeable difference concerns the
way of synchronizing the KNL processors during computations in successive time steps. For Intel Offload, each KNL has to be
synchronized separately using offload_wait construction, while in the case of the OpenMP Accelerator Model it is enough to use a
single taskwait construction to synchronize all the KNL devices.

8.2. Performance results

Table 7 presents the performance results achieved for two programming environments on the platform specified in Table 6, with
KNL processors connected via the OPA fabric. We assume the same configurations of the application parameters as in Section 7.1. The
versions with the static and dynamic intensity of computations were compiled using Intel icpc compiler (ver. 17.0.2). Besides the total
execution time Tp obtained for a different number = …p 1, 2, ,8 of KNL devices, this table shows the speedup Sp and efficiency Ep
defined as =S T T/p p1 and =E T S/ *100%,p p1 as well the speedup SCPU calculated against the execution time TS or TD achieved on two
CPUs for respectively the static and dynamic intensity. These values of speedups and efficiency are specified only for Intel Offload.
Based on small (practically negligible) differences in performance between Intel Offload and OpenMP 4.5 (see last column of
Table 7), the speedups and efficiency are shown only for the Intel Offload version, which is also the only version used to study the
performance in the case of dynamic intensity. Fig. 13 complements Table 7 by giving a comparison of execution times achieved for
the platforms with the first (green colour) and second (red colour) generations of MIC.

Table 6
Specification of the tested platform with KNL processors.

Device type CPUs KNL accelerators

Number of devices 2 8

Name of each Intel Xeon Intel Xeon
device E5-2697 v4 Phi 7250F
Number of cores 18 68
Number of threads 36 272
SIMD width [bits] 256 512
Base freq. [GHz] 2.3 1.4
AVX freq. [GHz] 2.0 1.2
AVX peak Gflop/s 576 2611.2
Scalar peak Gflop/s 331.2 380.8
LLC* size MB 45 34
Memory size 128GB DDR4 16GB MCDRAM 96 GB DDR4
Memory bandwidth [GB/s] 76.8 MCDRAM: +400 DDR4: 115.2

* LLC (Last Level Cache) refers to aggregated L2 caches for Intel Xeon Phi, and L3 cache for CPU.

Fig. 12. Scheme of communication between KNL processors for configuration with four KNLs.
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In the benchmarks, the best performance is achieved with 4 threads per each core of KNL. In addition, for the static computation
intensity, we select the static scheduling option in omp parallel for directive, without specifying the size of chunks, while the
dynamic scheduling option is used for the dynamic intensity, with the size of chunks selected as 2000, the size of rows of the grid.

For the static intensity of computations, a general conclusion from the analysis of Table 7 and Fig. 13 is a good performance of
KNL processors in comparison with CPUs and KNC coprocessors. In fact, already a single KNL allows accelerating the application
more than 2 times in comparison with 2 Broadwell CPUs, and about 2.8 times against a single KNC. The configuration with 2 KNL
processors yields the speedup of about 1.55x against the most advanced hybrid platform with 2 CPUs and 2 KNCs. Increasing the
number p of KNL devices allows further decreasing the execution time, which for =p 6 is reduced about 8x against 2 CPUs. While
this configuration, which gives =S x3.84 ,p can be difficult to accept from the point of view of efficiency, the usage of 4 KNL processors
seems to be fully reasonable as now =S 3.12p and =E 78%p . In this case, it becomes possible to accelerate the application about 6.7x
and 3.7x against respectively 2 Broadwell CPUs and the most advanced hybrid platform.

At the same time, the performance results achieved in the case of the dynamic intensity of computations indicate pretty large

Table 7
Performance results for the platform with KNL processors achieved for Intel Offload and OpenMP 4.5 versions of the application. The statistical
properties of measurements are given by RSD less than 1.56% (static intensity), and RSD less than 1.81% (dynamic intensity).

Intel Offload with OpenMP OMPAM 4.5

S D S

Tp [s] SCPU Sp Ep [%] Tp [s] SCPU Sp Ep [%] Tp [s] ΔT [%]

1 × KNL 3960 2.16 — — 1641 1.82 — — 4070 2.77
2 × KNL 2200 3.88 1.80 90 1085 2.76 1.51 76 2266 3.00
3 × KNL 1614 5.29 2.45 82 1045 2.86 1.57 52 1628 0.87
4 × KNL 1271 6.72 3.12 78 866 3.45 1.89 47 1278 0.55
5 × KNL 1109 7.70 3.57 71 844 3.54 1.94 39 1100 -0.81
6 × KNL 1031 8.28 3.84 64 740 4.04 2.21 37 1042 1.06
7 × KNL 953 8.96 4.16 59 729 4.10 2.25 32 979 2.72
8 × KNL 930 9.18 4.25 53 710 4.21 2.31 29 957 2.90

Remark: The execution time on 2 CPUs is =T 8539S s (RSD = 1.14%) and =T 2991D s (RSD = 2.28%) for the static and dynamic intensity,
respectively.

Fig. 13. Comparison of execution times achieved for platforms with KNC and KNL devices, for the static (a) and dynamic (b) intensity of com-
putations.
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room for further optimizations, beginning from a noticeably lower speedup =S x1.82CPU obtained for a single KNL against 2
Broadwell CPUs, as compared to =S x2.18CPU for the static intensity. It is not a surprise then that the scalability drops significantly in
the whole range of tests for the dynamic intensity. For example, the usage of 4 KNL devices gives only =S x1.89 ,p =E 47%,p that
permits accelerating the application about 3.45x and 1.9x against 2 Broadwell CPUs and the most advanced hybrid platform, re-
spectively.

Remark 4. The platform specified in Table 6 does not utilize the Intel turbo boost technology. It is the reason that the execution times
for Broadwell CPUs are somewhat higher than those for Haswell CPUs (see Table 3) despite of the slightly lower base AVX frequency
of Haswell CPUs.

9. Related works

The Intel MIC architecture has been investigated by many researchers in order to speedup their applications. An exhaustive
collection of such investigations for the first generation of this architecture is included in the Intel Xeon Phi coprocesor application
catalog [15]. Examples of research on accelerating applications with the second generation of Intel Xeon are presented, e.q., in papers
[7,14,31] and books [20,25].

The ability to fully exploit modern heterogeneous HPC systems becomes vital for optimizing the overall performance
[7,14,28,40]. An example of research in this direction is the methodology proposed in our previous works [41,53] for a stencil-based
application. This approach enabled us to utilize completely the available resources by distributing computations across the entire
CPU–GPU hybrid platform. A new level of heterogeneous concurrent execution of a Monte Carlo photon transport simulation was
presented in [51]. This simulation was extended to execute on any combination of CPUs, GPUs, and MICs concurrently. The proposed
approach allows each device to repeatedly grab portions of the domain, and compute concurrently until the entire domain has been
simulated. Mapping parallel graph processing on a node with KNC coprocessors is a challenge considered in [4]. The resulting hybrid
CPU–MIC execution achieved the speedup of up to 1.41x over the better of CPU-only and MIC-only executions. However, this solution
required a deep interference in the basic code, while in this work we assume no significant modifications of the code. The moder-
nization of an application in order to achieve high performance on hybrid CPU–KNL platforms is described in paper [7]. In this work,
MPI processes on the CPU host are responsible for offloading computations to KNL devices using the OoF technology. The short-
coming of this research is constraining the number of KNLs in the platform by only two devices.

The phase-field method is a powerful tool for solving interfacial problems in materials science [43]. It has mainly been applied to
solidification dynamics [39], but it has also been used for other phenomena such as fracture dynamics [21], and vesicle dynamics
[43]. The number of scientific papers related to the phase-field method exponentially increases from 1990 after Kobayashis successful
dendrite growth phase-field simulation, reaching about 400 positions in 2012 (according to the SCOPUS database) [48].

A quick growth of computing power allows modeling complex solidification processes with many grains, also for 3D space. An
example of this trend is the peta-scale phase-field simulation of dendritic solidification performed on the TSUBAME2.0 super-
computer powered by GPUs [42]. Therefore, the presented research is a part of global tendency to use modern computing platforms
for modeling the phase-field phenomena. There are many papers devoted to modeling dendritic solidification phenomena that use
such approaches as cellular automata, finite element and finite difference methods [1,5,54]. The important highlight of this study is
the utilization of the generalized FDM, which permits us to model phenomena where the distribution of nodes in grids is diversi-
fied–concentrated in border areas of the inter-phase, and sparse in areas with a low diffusivity or already solidified.

In our previous works [10,44–46], we dealt with porting and optimization of the phase-field simulation of alloy solidification on
CPU–KNC hybrid platforms, without signification modifications of the original application code. The second of these papers took
advantages of using both CPUs and KNCs for the parallel execution of computational workloads, while in the rest of our papers
parallel workloads were assigned to KNCs or CPUs only. What is also important, only a single variant of programming environments
was studied in each of these works: Intel Offload in papers [45] and [44], OpenMP 4.0 Accelerator Model in [10], and hStreams in
[46].

Thus, there is considerable interest in a comparative study of utilizing different programming environments to exploit resources of
CPU–MIC architectures, with a real-life application as a testbed. To the best of our knowledge, the existing literature do not provide
such a study. It is a common practice [28] to investigate only a single programming environment when porting an application to
hybrid platforms with MICs. At the same time, there are papers presenting such comparisons for hybrid systems with GPU accel-
erators. For example, works [11,12] provide a comparison of performance results achieved for porting a CFD mini-application using
the OpenMP 4.0/4.5 Accelerator Models and OpenACC programming standard.

There is always an open question which environments should be selected for such a study. We settled this question in favor of a
widely supported standard (OpenMP) and de facto standard (Intel Offload), on the one hand, and an innovative framework offering
high-level programming abstractions (hStreams), on the other hand. That is why we do not consider, for example, the HAM-Offload
framework [35] that provides the means for intra- and inter-node offloading on clusters with KNC coprocessors. This framework,
which was developed by Zuse Institute Berlin, allows overcoming the single-node limitation while keeping the convenient offload
programming model. However, the evident disadvantage of this solution is its limited support. It is available only for the first
generation of MIC architecture, while Intel Offload and OpenMP 4.5 support offloading computations to KNL processors over the HPC
fabric as well.

Our study of heterogeneous programming environments for hybrid CPU–MIC platforms is restricted to the offload model. As the
original code used OpenMP for parallelizing the solidification application, this choice allows us to avoid significant modification of
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the initial code, while remaining within the shared-memory parallelism. Thus, we exclude the symmetric-mode approaches for KNC
coprocessors that permit parallelizing applications using MPI supplemented with an appropriate threading model [7,18]. At the same
time, benchmarking our application on the platform with multiple KNL processors has shown a clear need to use MPI [20,25] in this
case, as a remedy against scalability limitations of the offload model and the way to take full advantage of HPC fabric.

10. Conclusions and future works

The general-purpose programming environments provided by the Intel MIC architecture allows straightforward porting of an
application code to hybrid CPU–MIC platforms, assuming no significant modifications of the code. At the same time, effective
parallelism is difficult to achieve in heterogeneous architectures, especially when both CPUs and accelerators are used to perform
computing-intensive pieces of code. Besides achieving efficient performance, the cost of software development becomes another
bottleneck preventing the wide adoption of HPC applications for hybrid platforms. Thus there is a considerably interest in studying
the influence of programming environments on the efficiency of porting real-world applications to CPU–MIC platforms.

Among the main issues of achieving effective parallelism in CPU–MIC platforms are: 1) flexible management of computing
resources; 2) minimization of overheads for management of device memories; 3) low-cost intra- and inter-device synchronization; 3)
minimization of cost of communication between CPUs and MICs, including overlapping communication and computation. In our
work, resolving these issues is based on using the heterogeneous programming model–a mixture of shared-memory and offload
programming.

The main goal of this paper is the suitability assessment of various programming environments implementing this model when
porting the solidification modeling application, a real-life scientific code used as a testbed. Concerning the question which en-
vironments should be selected for such a study, we settled this question in favor of a widely supported standard (OpenMP) and de
facto standard (Intel Offload), on the one hand, and an innovative framework offering high-level programming abstractions
(hStreams), on the other hand.

The criteria of our assessment is the overall performance of developed application codes. The software development implements
the sequence of steps required for porting and optimizing the solidification application to CPU–MIC platforms, without significant
modification of the original application code. This sequence includes: transformation of data layout, partitioning of computations and
optimization of data movements, load balancing of workloads between devices, parallelization of computations across cores/threads,
and vectorization. The way how the studied environments supports the implementation of this sequence is the basis of the assess-
ment. Among the studied aspects which differentiated these environments are: 1) management of coprocessors; 2) way of separation
of computations and writing results to the file; 3) mechanisms used for inter-device and intra-CPU synchronizations; 4) way of
parallelizing the workload execution within devices.

The experimental evaluation of the four versions of the solidification application code for hybrid CPU–KNC platforms shows that
excluding the OpenMP 4.0, the rest of them are able to adapt to expansion of available resources, but with different efficiency. The
shortest execution time is achieved for Intel Offload. Also, the detailed analysis shows that the main reason for the poor performance
of OpenMP 4.0 are issues related to the affinization of CPU threads.

At the same time, the experience gained in this study highlights separation of concerns as the main feature of hStreams which
contributes to making porting and tuning a real-life code easier. For the studied application, the usage of the stream abstraction
provides the high-level exposure of parallelism, where each stream encapsulates a clear functional semantics. Also, opposite to other
versions, the hStreams library delivers ready-to-use constructions for all the aspects of control over mapping the application
workloads to CPU–KNC platforms. What is important is that these advantages of the high-level hStreams framework are achieved at
low performance overheads in comparison with the low-level Intel Offload solution.

The whole assessment is concluded with benchmarking the application performance on the platform with KNL processors. By
using the Offload over Fabric technology, the adaptation of codes developed for the first generation of the MIC architecture to the
second generation is almost straightforward. However, due to high performance overheads for the scenario when CPUs concurrently
offload computations to KNL devices and execute parallel workloads, we release CPUs from executing the computational core of the
application. Instead, we investigate the possibilities of accelerating the application by expanding the number of KNLs in the testbed
up to 8 devices, using Intel Offload and OpenMP 4.5 Accelerator Model.

This work has shown the efficiency of the proposed methodology for solidification modeling problems with the static intensity of
computation. However, in the case of the dynamic intensity, the scalability of utilizing computing devices drops significantly.
Eliminating this disadvantage requires development of an efficient algorithm enabling run-time load balancing of workloads between
devices. This is primary topic of our ongoing research. The topics of our future work include the usage of MPI to overcome scalability
limitations of the offload approach on platforms with multiple KNL processors, as well as development of a performance model of the
application and verifying the model based on experimental data. The functional performance model [23,24,40], which is expected to
be used for this aim, requires carrying out an exhaustive set of tests for different sizes of the problem.
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