
J Supercomput (2018) 74:1534–1546
https://doi.org/10.1007/s11227-018-2239-3

Strategy for data-flow synchronizations in stencil
parallel computations on multi-/manycore systems

Lukasz Szustak1

Published online: 6 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract In this paper, an innovative strategy for the data-flow synchronization in
shared-memory systems is proposed. This strategy assumes to synchronize only inter-
dependent threads instead of using the barrier approach that—in contrast to our
approach—synchronize all threads. We demonstrate the adaptation of the data-flow
synchronization strategy to two complex scientific applications based on stencil codes.
An algorithm for the data-flow synchronization is developed and successfully used
for both applications. The proposed approach is evaluated for various Intel microar-
chitectures released in the last 5 years, including the newest processors: Skylake and
Knights Landing. The important part of this assessment is the performance comparison
of the proposed data-flow synchronization with the OpenMP barrier. The experimental
results show that the performance of the studied applications can be accelerated up to
1.3 times using the proposed data-flow synchronizations strategy.

Keywords Shared-memory platforms · Data-flow synchronization · Barrier · Stencil
codes

1 Introduction

The huge capacity of modern HPC platforms allows complex problems, previously
thought impossible, to be solved [12]. Reaching this goal requires to developmore effi-

This work was supported by the National Science Centre (Poland) under Grant no.
UMO-2017/26/D/ST6/00687. The author is grateful for granting access to computing infrastructure
provided by the MICLAB project no. POIG.02.03.00.24-093/13.

B Lukasz Szustak
lszustak@icis.pcz.pl

1 Czestochowa University of Technology, Czestochowa, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2239-3&domain=pdf
http://orcid.org/0000-0001-7429-6981


Strategy for data-flow synchronizations... 1535

cient programming abstractions enabling better utilization of computing resources [7].
In particular, the still growing parallelism of emerging computing systems makes
the synchronization issues of critical importance for scaling application performance
on these systems [4]. The present paper meets this challenge for stencils algorithm
running on advanced multi- and manycore computing platforms such as Intel architec-
tures released in the last 5 years, including Ivy Bridge, Haswell, Broadwell, Skylake,
Knights Corner and Knights Landing.

In this paper, we propose an innovative strategy for the data-flow synchronization
in shared-memory systems. The main idea of this strategy is to synchronize only
interdependent threads instead of using the barrier approach that—in contrast to our
approach—synchronize all threads. An inseparable part of this strategy is the scheme
of thread interrelationships for a given application. In fact, the data dependencies,
workload distribution, way of parallelization and inter-thread data traffic play a key
role in the effective adaptation of this strategy to a given application.

This paper demonstrates the adaptation of the proposed strategy to two complex
scientific applications. The first one is the Multidimensional Positive Definite Advec-
tion Transport Algorithm (MPDATA), the main module of the multiscale fluid model
EULAG [10,15]. The EULAG model is an innovative solver in the field of numeri-
cal modeling of multiscale geophysical flows. Another application area tackled in the
work refers to the phase-field method, which is a powerful tool for solving interfacial
problems in materials science [11]. In this paper, we focus on the parallel implemen-
tation of a numerical model of the dendritic solidification process in the isothermal
conditions [12]. These two applications belong to the class of the forward-in-time
algorithms, which assume the iterative execution of multiple time steps. Each of the
considered applications consists of a set of stencil-based computing kernels. Applica-
tions of this kind are used typically for long running simulations such as the numerical
weather prediction that needs to execute several thousand time steps for a given size
of domain.

Based on the proposed strategy, a data-flow synchronization algorithm is developed
and successfully used for both applications. It is then evaluated experimentally to
compare the efficiency of the data-flow synchronization with the OpenMP barrier.
The results of tests show that the performance of these applications can be accelerated
up to 1.3 times using the proposed approach.

The State-of-the-Art Synchronization algorithms differ in trade-offs between com-
munication complexity, length of the critical path and memory footprint [9]. The
barriers are an essential synchronization approach for parallel models of many shared-
memory programming languages such as OpenMP, OpenCL or Cilk. They can be
grouped into three categories: centralized, tree and butterfly. In addition, work [9]
presents a hybrid barrier implementation dedicated to the first generation of Intel
Xeon Phi accelerators.

Each synchronization algorithm features its own set of trade-offs, where the real
profit is largely dependent on the structure of a computing systems. The optimization
of barrier synchronization has been widely studied [2,3,6,8]. Typically, the barriers
algorithms [4] are usually split into three phases: arrival, waiting and departure. The
arrival phase shifts all arriving threads at the barrier into a waiting state. Once the
execution of all threads has been locked by the barrier, the departure (or release) phase

123



1536 L. Szustak

is entered, which releases all threads from their busy state at once. As a result, all
threads pass the barrier.

The main aim of this work is to avoid global barriers: the synchronization process
should proceed only between carefully selected threads that depend on each others.
An excellent justification and study of related work meeting this challenge can be
found in the work of Bhatti et al. [1]. The authors presented an approach to implement
stencil computations as dynamic task graphs, aiming at minimizing the synchroniza-
tion overheads. In contrast to our approach, their method requires to redesign the
structure of a parallel code using Intel Threading Building Blocks. At the same time,
the synchronization strategies that base on data-flow communication layers are very
popular in distributed-memory programming standards, including MPI or hStreams
programming library [5]. In both cases, the synchronization between the interdepen-
dent processing elements is explicitly defined according to communication flows of
data, using the specific commands such as MPI_Send and MPI_Recv in the case of
MPI. However, this is achieved on a totally different level of programming abstraction
than in the proposed approach.

2 Strategy for data-flow synchronization in stencils

The idea of strategy for the data-flow synchronization is to synchronize only inter-
dependent threads/cores instead of using the barrier approach. This strategy needs to
define the synchronization groups of threads/cores execution of which depend on each
others. For this aim, the inter-thread traffic has to be determined for a given application,
by considering the data dependencies of parallel computation.

An example of parallel computations including three stencil kernels is demon-
strated in Fig. 1a. This example illustrates not only the general scheme of parallelizing
computations across three cores, but also outlines the interrelationship between them.
Particularly, in order to compute the third kernel, core_B and core_C are responsible
for passing the outcomes computed, respectively, by core_A and core_B into the
second kernel. At the same time, to compute the second kernel, core_A and core_B
need to transfer the results calculated, respectively, by core_B and core_C by the first
kernel. The available cores have to be synchronized because of the inter-core traffic.
The classical strategy for the synchronization is based on the barrier approach that
synchronizes all cores (Fig. 1b). However, not all cores have to be synchronized in
this example, since core_A and core_C do not depend on each other.

In contrast to the barrier approach, we propose to synchronize only interdepen-
dent cores. To reach this aim, two synchronization groups of cores are defined in this
example: the first group includes core_A and core_B, while the second one embraces
core_B and core_C . The key assumption for our strategy is to perform synchroniza-
tion inside every group of cores. The general idea is shown in Fig. 1c. It is expected
to reduce the synchronization costs since each group should include definitely less
cores/threads to synchronize than the barrier approach. Additionally, the proposed
approach can alleviate the negative effect of load imbalance between cores that arises
when the workload cannot be partitioned evenly. This advantage is also illustrated in

123



Strategy for data-flow synchronizations... 1537

(a)

(b)

(C)

Fig. 1 Synchronization strategies for stencil parallel computation: a example of three stencil kernels and
their parallelization; b barrier synchronization; c data-flow synchronization

Fig. 1c, where core_A can execute the second kernel earlier because it does not wait
for core_C .

3 Adaptation of data-flow synchronization strategy to MPDATA

The MPDATA application implements a general approach for integrating the conser-
vation laws of geophysical fluids on micro-to-planetary scales [10]. It allows solving
advection problems and offers various options to model a wide range of complex geo-
physical flows. MPDATA corresponds to the group of iterative algorithms, where each
time step [15] operates on five input arrays and returns one output array that is neces-
sary for the next step. Every time step encompasses a set of 17 stencil kernels. Each
of them represents a stencil code which updates elements of 3D grid according to a
specific pattern. All these kernels are dependent on each others, where the outcomes of
prior kernels are usually input data for the subsequent ones. The four synchronizations
points are placed after the 4th, 7th, 13th, and 17th MPDATA kernels.

In our previous works [7,14,15], we proposed methods for the adaptation of
MPDATA to multi-/manycore systems. These methods contribute to ease memory
and communication bounds and to better exploit computation resources of shared-
memory systems, including CPUs and Intel Xeon Phi. The main challenge of these
works was to minimize data transfers between the main memory and cache hierar-
chy and better exploit the computing resources. To reach this goal, we proposed the
(3+1)D decomposition of MPDATA computation [15] based on a combination of the
loop fusion and loop tiling optimization techniques. The proposed approach yields a

123



1538 L. Szustak

(a) (b)

Fig. 2 Parallelization of MPDATA: a (3+1)D decomposition of MPDATA; b workload distribution across
threads and cores for every MPDATA sub-domain of size nB × mB × l B

significant performance gain for Intel Xeon CPUs and Intel MICs (up to about four
times).

The proposed decomposition requires partitioning the MPDATA grid into a set
of sub-domains of size that enables to keep all the intermediate data in the cache
memory. The consecutive sub-domains are processed sequentially, one by one, where
each sub-domain is responsible for computing all the MPDATA kernels that per-
form computations on blocks of the corresponding arrays, and returns an adequate
part of the output array. Since kernels depend on each others, the parallelization
process for each MPDATA sub-domain requires implementing four synchroniza-
tions points. As a result, processing every sub-domain includes four stages, where
the first stage contains four MPDATA kernels, the second one—three kernels,
the third one—six kernels, while the last stage includes four kernels. The syn-
chronization of threads is performed after every stage. In consequence, the total
amount of synchronization points depends on the numbers of sub-domains and time
steps.

The general scheme of the proposed decomposition is presented in Fig. 2a. The
parallelization process is performed within every sub-domain using all the available
threads. For this aim, each sub-domain of size nB×mB×l B is partitioned evenly into
parts of size nB

TC × mB
CN × l B, where CN denotes the number of physical cores, while

TC is the number of threads per each core. All these parts are assigned to threads in
compact fashion, in order to enable their efficient cooperation (Fig. 2b). As a result,
the neighbor parts of each sub-domain are processed by the adjacent physical cores,
including threads pinned to them.

The execution of an MPDATA stage requires to load outcomes from the kernels
assigned to the previous stages. Furthermore, the stencil pattern for a given stage cor-
responds to the aggregate patterns of MPDATA kernels belonging to this stage. Based
on data dependencies between MPDATA kernels, we are able to define the general
27-point stencil pattern (Fig. 3a), that in fact is suitable for every stage. According
to this pattern, a given grid element processed at any stage requires delivering of all

123



Strategy for data-flow synchronizations... 1539

(a) (b)

Fig. 3 Interrelationships between cores, threads and synchronizations for MPDATA: a aggregate stencil
pattern of MPDATA stages; b structure of synchronization groups of threads

neighbor elements returned by previous stages. These elements are located in a 3D
subspace corresponding to the nearest neighborhood of the processed element. By
considering the elements computed on the border between sub-domains, it can be
concluded that the inter-thread data traffic takes place only between all the threads
pinned to adjacent physical cores. In fact, the threads assigned to a given physical core
Ci depend only on the outcomes computed by the threads pinned to the core Ci−1 on
its left side, as well as the threads pinned to the core Ci+1 on its right side. At the
same time, the threads associated with the coresCi−1 andCi+1 do not depend on each
others.

Therefore, to improve the efficiency of synchronization in MPDATA computation,
we propose to synchronize only the threads pinned to every pair of adjacent cores. To
reach this aim, we define (CN − 1) synchronization groups of threads (see Fig. 3b)
that include the subsequent pairs of adjacent physical cores, where a given i th pair
includes all threads assigned to the cores Ci−1 and Ci , while the next (i + 1) group
encompasses threads pinned to the coresCi andCi+1. As a result, the threads assigned
to a core are now associated with two synchronization groups on their left and right
sides. An exception to this rule is the first and last cores that are assigned only to a
single group. If TC is the number of threads per core for a given computing plat-
form, then the total number of threads per every synchronization group is equal to
2 × TC .

To implement the data-flow synchronization approach, we develop a new syn-
chronization algorithm based on the centralized counter-based algorithm [4]. In the
proposed Algorithm 1, every synchronization group of threads (shortly syncGroup) is
equippedwith a single synchronization point (syncPoint) that contains two shared syn-
chronization flags: (i) a counter initially containing the number of threads per a given
syncGroup and (ii) a global release flag (global sense). Basically, once a given thread
arrives to the syncPoint (arrival phase) the counter is atomically decremented, and the
thread waits (waiting phase) for a global release flag to change its state. If the value of
the counter reaches zero, the flag is updated to release all waiting threads assigned to a
given syncGroup (departure phase). In the algorithm, a separate sense-reversal flag [4]

123



1540 L. Szustak

Algorithm 1 Data-Flow Synchronization algorithm for MPDATA stencils
Input: le f t LocalSens; right LocalSens; le f t Point ; right Point

L := fetch_and_add(leftPoint.counter, -1) � Arriving phase
R := fetch_and_add(rightPoint.counter, -1)
if L = 0 and R = 0 then � Scenario 1

le f t Point.counter := le f t Point.threadsNum
le f t Point.globalSense := le f t LocalSens
rigthPoint.counter := right Point.threadsNum
right Point.globalSense := right LocalSens

else if L = 0 then � Scenario 2
le f t Point.counter := le f t Point.threadsNum
le f t Point.globalSense := le f t LocalSens
while right Point.globalSense �= right LocalSens do � Waiting phase
end while

else if R = 0 then � Scenario 3
rightPoint.counter := rightPoint.threadsNum
rightPoint.globalSense := rightLocalSens
while le f t Point.globalSense �= le f t LocalSens do � Waiting phase
end while

else � Scenario 4
while le f t Point.globalSense �= le f t LocalSens or � Waiting phase

right Point.globalSense �= right LocalSens do
end while

end if
leftLocalSens := !leftLocalSens � Departure phase
rightLocalSens := !rightLocalSens

is used to free all the threads once the last thread reaches a given syncPoint. Therefore,
each thread includes also one local release flag of its private sense (localSense) per
every synchronization point. Finally, since every thread is associated with two syn-
chronization groups, the synchronization phases for these two groups are merged to
avoid a synchronization deadlock.

In Algorithm 1, a given thread atomically fetches and decrements two counters
assigned to its left and right synchronization points (arrival phase), while the further
execution of this thread is dependent on states of these counters and corresponds to
one of the four possible scenarios. In the first scenario, a given thread reaches both
the left and right counters as the last thread, changing values of these counters to zero.
Then, this thread changes the state of the global sense flags assigned to the left and
right synchronization points, in order to releases all threads from both synchronization
groups (departure phase). The second scenario corresponds to the case when a given
thread reaches only the left counters as the last one. In this case, the thread updates
only its left global sense, in order to release all waiting threads assigned to the left
synchronization group, and then will wait for the right global release flag to change
its state (waiting phase). In the next scenario, the right counter is decremented to zero
that enables releasing the right group of threads. This allows passing a given thread
to the waiting phase for the left syncGroup. In the last scenario, the values of both
counters are greater than zero, so a given thread has to wait for all threads associated
with the left and right synchronization groups.

123



Strategy for data-flow synchronizations... 1541

4 Adaptation of data-flow synchronization strategy to solidification
modeling application

Another subject of our research is adaptation of the data-flow synchronization strategy
to the numericalmodeling of 2D solidification problems [12]. The resulting computing
scheme belongs to the group of forward-in-time, iterative algorithms. The application
code includes five computing kernels that are processed sequentially one by one,
in every time step. The computing kernels represent stencil codes which updates
elements of the 2D grid according to 9-point stencil patterns, which involve grid
points located in the nearest neighborhood. All these kernels depend on each others:
outcomes returned by a given kernel are the input data for the next one. In consequence,
the five synchronization points are required per every time step.

In our previous works [5,12,13], we developed a methodology for porting the
parallel code of this application to hybrid platforms with CPUs and Intel Xeon Phi
coprocessors, assuming no significant modifications of the code. In particular, we
evaluated different setups for the OpenMP parallelization. Independently of selecting
static (for coprocessors) or dynamic (for CPUs) scheduling option, the chosen
scheme of scheduling of loop iterations tries to assign evenly consecutive chunks of
iterations among subsequent threads. In consequence, the 2D domain is partitioned
along one dimension into a set of sub-domains, where a given sub-domain is processed
by a single thread ti . For the 9-point stencil pattern, the inter-thread data traffic takes
place only between subsequent couples of neighbor threads, where a given i th couple
includes threads ti−1 and ti , while the next couple embraces threads ti and ti+1. The
total number of these couples corresponds to the total number of available threads
minus one, where every thread is associated with two couples. In general, the thread
ti depends only on the outcomes of the thread ti−1 on its left side, and the thread ti+1
on its right side, but these two threads (ti−1 and ti+1) do not depend on each other.
Since only the adjacent threads depend on each other, we propose to perform the
synchronization inside every couple of threads instead of using the barrier approach.
So each of these couples becomes now a synchronization group of two threads.

Such a synchronization scheme is similar to the MPDATA case, where only threads
assigned to each couple of adjacent cores are synchronized. The main difference is the
number of synchronization groups and the number of threads per each group. In fact,
if a given computing platform supports only a single thread per each physical core,
the synchronization scheme is exactly the same for both applications. As a result, the
proposed Algorithm 1 can be successfully reused again in the solidification modeling
application.

5 Experimental results

The proposed approach is evaluated experimentally for various Intel microarchitec-
tures released in the last 5 years (https://ark.intel.com).Weuse six computingplatforms
based on Ivy Bridge, Haswell, Broadwell, Skylake, Knights Corner andKnights Land-
ing. The first four platforms represent 2-socket servers with Intel Xeon processors,
while the last two ones are based, respectively, on the first and second generations of

123

https://ark.intel.com


1542 L. Szustak

Intel Xeon Phi chips. In all tests, the Intel icpc compiler (v.17.0.1) with the optimiza-
tion flag -O3 is used. To ensure reliability of results, all performance measurements
are repeated several times, and averaged execution times are used. Moreover, since
the accuracy of computation plays a key role for the studied applications, the double-
precision floating-point format is selected.

The OpenMP standard is used to parallelize both applications. While testing the
proposed synchronization approach, calls to the OpenMP barrier are replaced with
invocations of a function implementing the proposed Algorithm 1. Since every syn-
chronization point shares the synchronization flags within its synchronization group
of threads, the compiler intrinsic of fetch-and-add instruction is used for updat-
ing the counter flags atomically. Additionally, the procedure for pinning threads to
selected synchronization groups is invoked before executing the parallel region of the
application code.

Table 1 presents the performance results of the MPDATA application obtained
for the domain of size 256 × 256 × 64, and 500 time steps. This table shows the
overall execution time for MPDATA simulation, as well as the minimum (min) and
maximum (max) times for the synchronization process. The presented values of the
min and max parameters are selected among measurements taken for all threads.
Additionally, the percentage of the synchronization cost in relation to the overall
execution time is determined. Finally, this table demonstrates the overall performance
gain from the usage of the proposed data-flow synchronization approach forMPDATA.
In all performed tests, the proposed approach allows reducing the execution time of
MPDATA simulations for all computing platforms. In particular, the best acceleration
of about 1.3 times against the OpenMP barrier is achieved for the two newest platforms
based on Knights Landing and Skylake. At the same time, the lowest speedup of 1.14x
is obtained for Intel Ivy Bridge (platform A).

The performed tests reveal that the cost of synchronization refers to a significant
part of theMPDATA execution time, which reaches even 30% for the OpenMP barrier,
while it is reduced to 17% for the proposed approach. Themain reason of this overhead
is a huge number of synchronization points. Their amount depends on the number
of sub-domains. In these tests, the best performance results are achieved for sub-
domains of size 4 × 256 × 64 that corresponds to partitioning the MPDATA domain
into 64 parts. In consequence, since each sub-domain requires four synchronization
points, 256 synchronization points are needed for a single time step of MPDATA.
Furthermore, there are variations in costs of synchronization processes across threads.
Such differences are results of an uneven workload partitioning between available
threads. This generates performance losses, and using the data-flow synchronization
allows reducing them about twice.

Figure 4 summarizes the experimental evaluation of the proposed synchronization
strategy for the MPDATA application. It shows the performance gain in relation to the
OpenMP barrier, for different domain sizes, and a variety of computing platforms. In
these tests, the acceleration of the MPDATA execution is in the range from 1.14× to
1.33× (Fig. 4a). It could be also observed that the cost of synchronization is reduced
for all experiments by the factor in the range from 1.63 to 2.89 (Fig. 4b).

The summary of tests performed for the solidification modeling application is pre-
sented in Fig. 5. Similarly to MPDATA, the proposed approach improves the overall

123



Strategy for data-flow synchronizations... 1543

Ta
bl
e
1

Pe
rf
or
m
an
ce

re
su
lts

of
M
PD

A
TA

fo
r
do

m
ai
n
of

si
ze

25
6

×
25

6
×

64
an
d
50

0
tim

e
st
ep
s,
ac
hi
ev
ed

fo
r
di
ff
er
en
tI
nt
el
m
ic
ro
ar
ch
ite

ct
ur
es
,i
nc
lu
di
ng

Iv
y
B
ri
dg

e
(A

),
H
as
w
el
l(
B
),
B
ro
ad
w
el
l(
C
),
Sk

yl
ak
e
(D

),
K
ni
gh

ts
C
or
ne
r
(E
),
an
d
K
ni
gh

ts
L
an
di
ng

(F
)

C
om

pu
tin

g
pl
at
fo
rm

s
Ty

pe
of

Sy
nc
.

E
xe
cu
tio

n
tim

e
(s
)

Sy
nc
.t
im

e
C
os
to

f
sy
nc
.(
%
)

O
ve
ra
ll
sp
ee
du

p
m
ax

(s
)

m
in

(s
)

2×
In
te
lC

PU
s
E
5-
26

95
v2

(A
)

O
M
P
ba
rr
ie
r

5.
14

0.
90

0.
58

17
.5
1

–

D
at
a-
flo

w
4.
50

0.
55

0.
15

12
.2
2

1.
14

2×
In
te
lC

PU
s
E
5-
26

97
v3

(B
)

O
M
P
ba
rr
ie
r

4.
21

0.
80

0.
70

19
.0
0

–

D
at
a-
flo

w
3.
54

0.
37

0.
16

10
.4
5

1.
19

2×
In
te
lC

PU
s
E
5-
26

82
v4

(C
)

O
M
P
ba
rr
ie
r

3.
95

0.
80

0.
60

20
.2
5

–

D
at
a-
flo

w
3.
40

0.
28

0.
20

8.
24

1.
16

2×
In
te
lC

PU
s
go

ld
61

48
(D

)
O
M
P
ba
rr
ie
r

2.
87

0.
88

0.
70

30
.6
6

–

D
at
a-
flo

w
2.
23

0.
38

0.
14

17
.0
4

1.
29

In
te
lx

eo
n
ph

i7
12

0P
(E

)
O
M
P
ba
rr
ie
r

7.
06

1.
80

1.
10

25
.5
0

–

D
at
a-
flo

w
6.
00

1.
00

0.
50

16
.6
7

1.
18

In
te
lx

eo
n
ph

i7
21

0
(F
)

O
M
P
ba
rr
ie
r

3.
58

0.
92

0.
48

25
.7
0

–

D
at
a-
flo

w
2.
70

0.
46

0.
17

17
.0
4

1.
33

123



1544 L. Szustak

(a) (b)

Fig. 4 Performance results for MPDATA achieved for different problem sizes, 500 time steps, and various
Intel microarchitectures: a overall speedup of MPDATA using the data-flow synchronization; b speedup of
data-flow synchronization against OpenMP barrier

(a) (b)

Fig. 5 Performance results of the solidification modeling application achieved for 2000 time steps, and
various Intel microarchitectures: a overall speedup of the application using the data-flow synchronization
obtained for different problem sizes, b execution time for the problem of size 500 × 500 and different
synchronization scenarios

performance for all tests (Fig. 5a). However, we observe a lower performance gain
than in the MPDATA case, with the speedups in the range from 1.03x to 1.15x, where
the highest gain of 1.15x is achieved for the platform based on the newest Skylake
processors. In fact, the solidification modeling application requires significantly less
synchronizations points than MPDATA. As a result, the synchronization cost consti-
tutes a smaller part of the total execution time than in the case of MPDATA (Fig. 5b).
At the same time, the acceleration of the synchronization process is at a similar level,
with the speedups in the range from 1.81 to 4.22 times.

6 Conclusions and future work

Modern multi-/manycore architectures feature both the increasing number of pro-
cessing elements, and a high level of complexity of their integration. In consequence,
accelerating the synchronization process becomes vital for attaining high performance
on emerging computing platforms. In this work, we present the new approach for
reducing the synchronization overhead for stencils by avoiding the global barriers. The

123



Strategy for data-flow synchronizations... 1545

innovative strategy for the data-flow synchronization in shared-memory platforms is
proposed. The main idea of this strategy is to synchronize only interdependent threads
instead of using the barrier approach that—in contrast to our approach—synchronize
all threads. We also develop the algorithm for the data-flow synchronization that is
successfully used for two stencil-based scientific applications.

The proposed approach is evaluated experimentally for various Intel architectures,
including IvyBridge,Haswell, Broadwell, Skylake,KnightsCorner andKnightsLand-
ing chips. An important part of this evaluation is the performance comparison between
the proposed data-flow synchronization and the Intel OpenMP barrier. All tests prove
that the data-flow synchronizations yields better performance results then the standard
approach. The overall performance of both the MPDATA and solidification modeling
applications is improved for all computing platforms. In particular, the best accelera-
tion of about 1.3 times is obtained for two platforms based on the newest processors
with Knights Landing and Skylake microarchitectures.

The proposed data-flow synchronization strategy allows reducing considerably the
synchronization costs. For a given application, the real profit depends on the problem
size and characteristics of computing platforms. The reduction of synchronization
costs in the range from about 1.6 to 4.2 times is achieved in comparison with the
OpenMP barrier. The proposed approach enables also alleviating the effect of load
imbalance between cores that arises when the computing workload cannot be parti-
tioned evenly across available threads.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bhatti ZW,Wuyts R, Costanza P, Preuveneers D, Berbers J (2013) Efficient synchronization for stencil
computations using dynamic task graphs. Procedia Comput Sci 18:2428–2431

2. Brooks E (1986) The butterfly barrier. Int J Parallel Program 15(4):295–307
3. Caballero D, Duran A, Martorell X (2013) An OpenMP* barrier using SIMD instructions for Intel

Xeon Phi coprocessor. In: International Workshop on OpenMP, pp 99–113
4. Dolbeau R (2014) Address selection for efficient barriers on the Intel Xeon PHI. http://www.dolbeau.

name/dolbeau/publications/barrierphi.pdf. Accessed 12 Dec 2017
5. Halbiniak K, et al (2016) Exploring OpenMP Accelerator Model in a real-life scientific application

using hybrid CPU-MIC platforms. In: Proceedings 3rd International Workshop on Sustainable Ultra-
scale Computing Systems, Sofia, Bulgaria, pp 11–14

6. Hensgen D, Finkel R, Manber U (1988) Two algorithms for barrier synchronization. Int J Parallel
Program 17(1):1–17

7. Lastovetsky A et al (2017) Model-based optimization of EULAG kernel on Intel Xeon Phi through
load imbalancing. IEEE Trans Parallel Distrib Syst 28(3):787–797

8. Mellor-Crummey J, Scott M (1991) Algorithms for scalable synchronization on shared-memory mul-
tiprocessors. ACM Trans Comput Syst 9(1):21–65

9. Rodchenko A et al (2015) Effective barrier synchronization on intel xeon phi coprocessor. LNCS
9233:588–600

123

http://creativecommons.org/licenses/by/4.0/
http://www.dolbeau.name/dolbeau/publications/barrierphi.pdf
http://www.dolbeau.name/dolbeau/publications/barrierphi.pdf


1546 L. Szustak

10. Smolarkiewicz P (2006)Multidimensional positive definite advection transport algorithm: an overview.
Int J Numer Meth Fluids 50(10):1123–1144

11. Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17(7):073001
12. Szustak L, Halbiniak K, Kuczynski L, Wrobel J, Kulawik A (2016) Porting and optimization of

solidification application for CPU -MIC hybrid platforms. Int J High Perform Comput Appl. https://
doi.org/10.1177/1094342016677740

13. Szustak L, Halbiniak L, Kulawik A,Wyrzykowski R, Uminski P, SasinowskiM (2016) Using hstreams
programming library for accelerating a real-life application on intel MIC. LNCS 10049:373–382

14. Szustak L, Jakl O, Wyrzykowski R (2017) Islands-of-cores approach for harnessing SMP/NUMA
architectures in heterogeneous stencil computations. LNCS 10421:351–364

15. Szustak L, Rojek K, Olas T, Kuczynski L, Halbiniak K, Gepner P (2015) Adaptation of MPDATA
heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci Program 2015:1–14

123

https://doi.org/10.1177/1094342016677740
https://doi.org/10.1177/1094342016677740

	Strategy for data-flow synchronizations in stencil parallel computations on multi-/manycore systems
	Abstract
	1 Introduction
	2 Strategy for data-flow synchronization in stencils
	3 Adaptation of data-flow synchronization strategy to MPDATA
	4 Adaptation of data-flow synchronization strategy to solidification modeling application
	5 Experimental results
	6 Conclusions and future work
	References




