
The Journal of Supercomputing (2019) 75:7765–7777
https://doi.org/10.1007/s11227-018-2460-0

Unleashing the performance of ccNUMAmultiprocessor
architectures in heterogeneous stencil computations

Lukasz Szustak1 · Kamil Halbiniak1 · Roman Wyrzykowski1 ·Ondřej Jakl2

Published online: 23 June 2018
© The Author(s) 2018

Abstract
This paper meets the challenge of harnessing the heterogeneous communication
architecture of ccNUMA multiprocessors for heterogeneous stencil computations,
an important example of which is the Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA). We propose a method for optimization of parallel
implementation of heterogeneous stencil computations that is a combination of the
islands-of-core strategy and (3+1)D decomposition. The method allows a flexible
management of the trade-off between computation and communication costs in accor-
dance with features of modern ccNUMA architectures. Its efficiency is demonstrated
for the implementation ofMPDATAon the SGIUV2000 andUV3000 servers, as well
as for 2- and 4-socket ccNUMA platforms based on various Intel CPU architectures,
including Skylake, Broadwell, and Haswell.

Keywords Stencil codes · MPDATA · Shared memory platforms · ccNUMA · SGI
UV 3000 · SGI UV 2000 · Skylake · Broadwell · Haswell

The authors are grateful to: (i) Intel Technology Poland, (ii) IT4Innovations National Supercomputing
Center, Technical Univ. of Ostrava, Czech Republic, and (iii) MICLAB project no.
POIG.02.03.00.24-093/13 for granting access to HPC platforms. This work was supported by the National
Science Centre (Poland) under Grant UMO-2017/26/D/ST6/00687..

B Lukasz Szustak
lszustak@icis.pcz.pl

Kamil Halbiniak
khalbiniak@icis.pcz.pl

Roman Wyrzykowski
roman@icis.pcz.pl

Ondřej Jakl
ondrej.jakl@ugn.cas.cz

1 Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland

2 Institute of Geonics of the Czech Academy of Sciences, Studentská 1768, 708 00 Ostrava-Poruba,
Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2460-0&domain=pdf
http://orcid.org/0000-0001-7429-6981

7766 L. Szustak et al.

1 Introduction

Modern ccNUMA multiprocessor systems offer increasing performance and amount
of memory at the cost of considerable internal complexity [4]. They allow using
the shared-variable programming model to take advantages of shared memory for
inter-process communications and synchronizations. However, the memory and com-
munication constraints may strongly limit the performance attainable on ccNUMA
platforms, where physical cores of processors are connected by a heterogeneous com-
munication structure. As data can be physically dispersed over many nodes, the access
to various data items may require significantly different times. This favors accesses to
the local memory as fastest. As a result, applications with a poor data locality reduce
the efficiency of the memory hierarchy, causing long waiting times for access to data.

One of leading vendors of ccNUMAmultiprocessor servers was SGI, that for more
20 years has been delivering SMP/NUMA (symmetric multiprocessor/non-uniform
memory access) platforms built around high-performance NUMAlink networks as
distributed shared memory systems. An example of advanced SGI’s product series
is SGI UV (“Ultra Violet”), and in particular, SGI UV 2000 [18] and UV 3000 [14]
servers. Based on Intel multicore CPUs and the high-speed NUMAlink system inter-
connect, they offer up to thousands of cores in a single systemwhich shares large main
memory. After selling SGI to HPE, these systems are now known as HPE Integrity
and HPE Superdome servers [9]. A budget alternative to such expensive systems is 2-
and 4-socket ccNUMA servers consisting of two or four Intel multicore CPUs. The
most powerful among them utilizes the newest Intel Xeon Scalable (Skylake) CPUs
and UPI interconnect [11].

As an example of using SGI UV systems to speed up a complex real-world applica-
tion, MapReduce was presented in [1], where a topology-aware placement algorithm
was proposed to accelerate the data shuffling phase ofMapReduce. The first generation
of SGIUVplatformswas applied in [3] to parallelize theGeneralizedConjugateResid-
ual (GCR) elliptic solver with preconditionner, using a mixture of MPI and OpenMP.

Aside from numerical applications, the SGI UV systems were also efficiently used
in other areas, such as computation on graphs [23] and combinatorial optimization
problems [2]. The results of performance comparison of 2-socket servers with various
Intel Xeon processors are presented in work [11], for a set of benchmarks such as
NAMD parallel molecular dynamic code, NAS Parallel Benchmarks, compression.

In our previous work [18], we have taken up the challenge of harnessing the hetero-
geneous nature of communications in SGI SMP/NUMA platforms for the MPDATA
application (Multidimensional Positive Definite Advection Transport Algorithm),
which consists of a set of heterogeneous stencil kernels. The islands-of-cores approach
(strategy) was proposed for heterogeneous stencils, based on replacement of implicit
data transfers between caches of adjacent processors at the cost of extra computations.
The proposed strategy allowed us to manage the balance between computations and
communications in accordance with features of SMP/NUMA systems such as SGI
UV 2000.

In this paper, we adapt this strategy to develop a method for optimization of parallel
implementation of heterogeneous stencil computations on ccNUMA multiprocessor
architectures. This method combines the island-of-core strategy with the (3+1)D hier-

123

Unleashing the performance of ccNUMAmultiprocessor… 7767

archical decomposition proposed previously in [19,21]. The efficiency of the method
is evaluated for the implementation of MPDATA on the SGI UV 2000 and UV 3000
servers, as well as 2- and 4-socket ccNUMA platforms based on various Intel CPU
microarchitectures, including Skylake, Broadwell, and Haswell.

To our best knowledge, there exists no investigation of the correlation between
computation and communication for heterogeneous stencils computations which con-
sist of a set of stencils with different patterns. The closest approaches were proposed
in papers [7,24], and particularly in work [8] devoted to generating and optimizing
stencil programs automatically. Similarly to our study, these works consider the code
transformation using the overlapped tiling technique. It enables removing the syn-
chronization and enhancing the data locality at the cost of redundant computations.
However, these works take into account only the homogeneous stencil computations,
with a single pattern only. Opposite also to our study, these approaches are addressed
to small computing platforms with one or two processors.

2 Overview of ccNUMAmultiprocessor systems

The ccNUMAmultiprocessor systems that we are explored in this paper share a unique
logical address space, which ismapped on a physicalmemory that is distributed among
the processors [6]. It is the hardware layer that makes all CPUs of a multiprocessor
system see the main memory in a consistent way, including the cache hierarchy. Every
computing unit can read andwrite a data item simply using load and store operations, so
the processes communication is through the sharedmemory.With the ccNUMA archi-
tecture, although the whole main memory is shared via an interconnecting subsystem
(point-to-point links, bus, crossbar, etc.), the access to different portions of distributed
shared memory may require significantly different times. Generally, an access to local
memory blocks is quicker than access to remote ones. However, due to automatic data
movements and coherent replications in caches, the cost of communication is invisible
for programmers.

In the last period, 2- and 4-socket platforms with Intel CPUs dominate the segment
of relatively inexpensive multiprocessor servers. They are built around a high-speed
point-to-point interconnect. Previously, it was QPI (QuickPath Interconnect), which
currently has been replaced by UPI (Ultra Path Interface) that provides the coherent
interconnect for systems based on Intel Xeon Scalable (Skylake) CPUs [11]. Equipped
with 2 or 3 UPI links connecting to other CPUs, they are able to scale a single platform
up to 8 sockets. Apart from increasing the data rate, UPI allows also improving the
power efficiency.

At the same time, the third generation of the SGI UV product line launched in
2014, and specifically the UV 3000 model [13,14], enables expanding the hardware
configuration up to 256 sockets (4096 cores) with 64TB of cache-coherent shared
memory, for a single system. This is possible thanks to the NUMAlink proprietary
interconnect with an enhanced hypercube topology.

Table 1 summarizes parameters of servers used in our benchmarks. The consid-
ered platforms provide the theoretical peak performance from about 0.5 to about 6
Tflops/s for double-precision floating-point format. These values are calculated for

123

7768 L. Szustak et al.

Table 1 Specification of multiprocessor platforms (https://ark.intel.com)

Computing
platform

CPU archit./
Interconnect

CPUs
(Cores)

Freq. (GHz)
(SIMD Freq.)

SIMD Peak
(Tflop/s)

A 4× Intel Xeon Skylake 4 2.5 AVX-512 3.04

Platinum 8180 UPI (4 × 28) (1.7)

B 4× Intel Xeon Broadwell 4 2.2 AVX2 1.38

E7-8890 v4 QPI (4 × 24) (1.8)

C 2× Intel Xeon Haswell 2 2.6 AVX2 0.49

E5-2697 v3 QPI (2 × 14) (2.2)

E SGI UV 3000

32× Intel Xeon Haswell 32 2.6 AVX2 5.88

E5-4627 v3 NUMAlink 6+ (32 × 10) (2.3)

E SGI UV 2000

14× Intel Xeon Ivy Bridge 14 3.3 AVX 1.47

E5-4627 v2 NUMAlink 6 (14 × 8)

SIMD operations of multiplication type (Vec Mul), considering the total number of
cores, and base SIMD frequency [5,10].

3 Introduction to parallelization of MPDATA application on shared
memory systems

The MPDATA application implements a general approach for integrating the conser-
vation laws of geophysical fluids on micro-to-planetary scales [15]. The MPDATA
algorithm enables solving advection problems, and offers several options to model
a wide range of complex geophysical (and even stellar [16]) flows. The MPDATA
computations correspond to the group of iterative, forward-in-time algorithms. This
application is used typically for long running simulations, such as the numerical
weather prediction, that require execution of several thousand time steps for a given
size of domain. In this paper, we consider using the algorithm to solve problems
defined on 3D grids.

Every MPDATA time step corresponds to the same computations, which consist
of a set of 17 kernels [20,21]. The MPDATA kernels represent the heterogeneous
stencils codes which update grid elements according to different patterns. The kernels
depend on each others: Outcomes of prior stages are usually input data for subsequent
computations. In the original version of MPDATA code, the consecutive kernels are
processed sequentially, one by one, where each kernel is processed in a parallel way
using the OpenMP standard. Every MPDATA kernel reads a required set of arrays
from the main memory and writes results to the main memory after computation.
The consequence is significant data traffic to the main memory, that mainly limits the
efficient usage of novel multi-/manycore architectures.

123

https://ark.intel.com

Unleashing the performance of ccNUMAmultiprocessor… 7769

To alleviate the memory-bound nature of MPDATA, we proposed [19–21] a new
strategy of workload distribution for heterogeneous stencils computations. The main
aim was to better exploit the cache hierarchy by moving the bulk of data traffic from
the main memory to the cache hierarchy. As a result, a new version of MPDATA
was successfully developed for small-scale shared memory systems. In particular, we
developed the (3+1)D decomposition of MPDATA, that is based on a combination of
two loop optimization techniques: loop tiling and loop fusion. The proposed decom-
position allows us to significantly reduce the main memory traffic, where the real
profit depends on the size of domains, as well as characteristics of a given computing
platform.

The proposed strategy allows a significant performance gain not only for 1- and 2-
socket platforms, but also for Intel Xeon Phi accelerators [12,20]. However, it does not
permit avoiding significant performance losses for larger multiprocessor architectures
[18]. The (3+1)D decomposition improves both cache reusing and the data locality,
but results in an intensive intra- and inter-cache communication between cores and
processors. In particular, if a single processors is used, the data traffic is restricted to
its cache hierarchy only. But if more processors cooperate to execute MPDATA, the
required data are also implicitly transferred between caches of neighbor processors.

4 Islands-of-cores strategy

In order to overcome the described shortcoming and improve the efficiency of the
MPDATA application, we proposed the islands-of-cores strategy [18] dedicated to
heterogeneous stencils such as those of MPDATA. This strategy exposes the correla-
tion between computation and communication for heterogeneous stencils, enabling a
better management of the trade-off between computation and communication costs in
accordance with features of various shared memory systems. The idea of islands-of-
cores strategy is presented in Fig. 1. It presents an example of 1D stencil computations
with three kernels (Fig. 1a), and two general scenarios of parallelizing these compu-
tations on two interconnected processors (Fig. 1b, c).

The first scenario (Fig. 1b) reveals an implicit inter-processor communication
because of data dependencies. In particular, the output element C[d] computed by
CPU_B within the third kernel depends on the element B[c] that is computed
by CPU_A as a result of kernel 2. However, B[c] depends on the element A[d]
which is returned by CPU_B in the first kernel. In consequence, implicit trans-
fers of two elements take place between the processors CPU_A and CPU_B of
a shared memory platform. Furthermore, three synchronization points are required
for ensuring the correctness of parallel computations. In general, the data transfers
between cores/processors are implemented through the cache hierarchy. As a result,
the required data will be implicitly transferred between caches of neighbor processors
through, e.q., QPI or UPI links [10].

The second scenario (Fig. 1c) allows avoiding transfers of data between processors
at the cost of extra computations. Instead of transferring elements A[d] and B[c]
computed by the first and second kernels, let both processors compute these elements
once more. In consequence, CPU_A computes one extra element A[d] of the first

123

7770 L. Szustak et al.

(c)(b)(a)

Fig. 1 Idea of Islands-of-cores strategy [18]: a example of stencil computations with three kernels; b par-
allelization with implicit data transfers between processors; c avoiding data transfers and synchronization,
at the cost of extra computations

kernel, and CPU_B delivers the additional element B[c] within kernel 2. However,
the additional element B[c] depends on the element A[c] from kernel 1, which is
computed by CPU_A in the first scenario. To avoid the transfer of element A[c]
between processor, let both of them compute this element twice. As a result, similar
to independent islands, both processors perform computations independently of each
other, at the cost of computing some amount of extra elements.

To sum up, the first scenario performs less computations but requires more data
traffic, while the second one minimizes the data traffic between processors by repli-
cating some computations. In general, both solutions have to be considered, but the
key point is how they fit to the architecture of a given computing platform. The sec-
ond scenario seems to fit perfectly to reduce inter-processor communications between
caches of processors in multiprocessor architectures. On the contrary, the first scenario
is well suited to be implemented inside processors as they provide a more efficient
interconnect between cores.

5 Optimization of MPDATA using the Island-of-core strategy

In this section, we propose a method that allows us to customize the island-of-core
strategy to the MPDATA application, which has a much more complex structure [20]
than the example shown in Fig. 1. We use the second scenario to reduce communi-
cations between caches of neighbor processors inside every MPDATA time step. To
achieve this aim, the abstraction of islands-of-cores is applied across P processors of
a given multiprocessor system, where a processor is identified with an island (or work
team) of cores.

Assuming that each work team consists of the same number of cores, the MPDATA
domain is evenly decomposed into sub-domains (Fig. 2a), so their number corresponds
to the number of processors. TheMPDATA sub-domains are then processed in parallel

123

Unleashing the performance of ccNUMAmultiprocessor… 7771

(b)

(c)

(a)

Fig. 2 Hierarchical domain decomposition of MPDATA: a domain partitioning into sub-domains following
the islands-of-cores strategy, b sub-domain decomposition into blocks of size adjusted to capacity of the
cache memory, and c parallel execution of MPDATA kernels within a single block by a given work team

by work teams, since every processor is able to execute computations within each
MPDATA time step independently of other processors, at the cost of extra computation.

Afterward, following the (3+1)D decomposition, each sub-domain is further par-
titioned into a set of blocks with size that enables keeping all the necessary data in the
cachememory (Fig. 2b). The successive blocks are processed sequentially, one by one,
where a block is processed in parallel by a work team of cores (Fig. 2c). Each work
team executes computations for all the MPDATA kernels on corresponding chunks of
arrays, including computing extra elements instead of transferring them from other
processors.

For a given multiprocessor, all work teams will perform the following activities in
each time step (see Fig. 3):

1. All the work teams share input data, utilizing the first-touch policy with parallel
initialization.

2. At the cost of extra computations, each team independently executes the set of
blocks within its sub-domain, following the (3+1)D decomposition.

3. After completing the whole time step, each team returns outcomes to the main
memory.Additionally, all the teams synchronize their operations, in order to ensure
the correctness of input data for the next time step.

The islands-of-cores strategy alleviates also the cost of synchronization between
processors. As shown in Fig. 3, we distinguish two levels of synchronization: between
processors, and between coreswithin each processor. In particular, after finishing inde-
pendent computations within a given time step, all the processors have to synchronize
their activities, in order to ensure the correctness of input data for the next time step.
This level of synchronization is successfully implemented by using the traditional
barrier approach to synchronize all threads.

The second level of synchronization is required to synchronize cores of each proces-
sorwithin time steps. In fact, eachMPDATAblock requires five synchronization points
to ensure the correctness of results. The amount of synchronization points depends on

123

7772 L. Szustak et al.

Fig. 3 Executing a single MPDATA time step

Table 2 Percentage of extra elements for the MPDATA domain of size 1024 × 512 × 64

of islands 1 2 4 8 14 16 32

% of extra elements 0.00 0.25 0.74 1.73 3.21 3.71 7.66

the number of MPDATA blocks. In consequence, a huge number of synchronization
points is expected for the second level (see Fig. 3). Its efficiency becomes critical for
the overall performance. For this reason, in our previous work [17] we proposed a
novel strategy for the data-flow synchronization in shared memory systems. The main
idea of this strategy is to synchronize only interdependent cores assigned to a given
work team, instead of using the barrier approach to synchronize all the threads.

The overall efficiency of the proposed method depends on a way how theMPDATA
domain is partitioned. In practice, only 1D variants of partitioning are considered. The
reason for avoiding 2D and 3D variants is that data layouts of all the MPDATA arrays
allow transfers of contiguous areas of memory along the first dimension only. In
consequence, too high communication overheads are expected when the MPDATA
domain is partitioned along two or three dimensions. Finally, the MPDATA domain
of size m × n × l is evenly decomposed into sub-domains of size m

P × n × l. The
way of partitioning together with the structure of data dependencies between the
MPDATA kernels impacts the total amount of extra elements that have to be computed
redundantly. Table 2 illustrates how the total number of extra elements increases with
the number of work teams.

As data transfers take place only between borders of neighbor MPDATA sub-
domains, the adjacent sub-domains are mapped onto processors that are physically

123

Unleashing the performance of ccNUMAmultiprocessor… 7773

Table 3 Execution times achieved for the basic version, pure (3+1)D decomposition, and the new imple-
mentation, using 2- and 4-socket ccNUMA platforms, as well as partial S∗ and overall S speedups obtained
against the (3+1)D decomposition and basic version

Computing platform Execution time (s) Speedups

Basic (3+1)D 2 teams 4 teams S∗ S

A 4× Intel Xeon Platinum 8180 385.3 225.2 140.3 37.1 6.07 10.38

B 4× Intel Xeon E7-8890 v4 518.3 216.6 167.7 69.3 3.12 7.48

C 2× Intel Xeon E5-2697 v3 1123.4 320.4 193.0 – 1.66 5.82

closely connected with each other, in order to reduce the communication paths. This
is achieved by selecting the correct policy for the OpenMP thread affinity inter-
face, that allows binding threads to cores. At the same time, the complexity of the
proposed hierarchical decomposition makes it impossible to implement efficiently
the multithreading parallelization using OpenMP constructs such as #pragma omp
for. Instead, we develop a proprietary scheduler responsible for the management of
workload distribution and data parallelism. For each OpenMP thread, this scheduler
explicitly defines the scope of work. Furthermore, for optimizing the performance of
shared memory platforms, it is of vital importance to allocate memory closest to a
physical core on which a given thread is executed. This is achieved with the use of the
technique known [22] as the first-touch policy with parallel initialization.

6 Performance results

This section presents the performance results obtained for the new implementation
of MPDATA developed using the method proposed in this work. All benchmarks
are obtained for the double-precision floating-point format on the domain of size
1024 × 512 × 64, assuming 5000 times steps. The benchmarks are executed for the
platforms outlined in Table 1. In the tests, the Intel icpc compiler is used (v.18.0.1 for 2-
and 4-socket platforms, and v.17.0.1 for SGI systems) with the optimization flag -O3
and properly chosen compiler arguments that support the full use of SIMD hardware
[5]. In order to guarantee the reliability of benchmark results, the measurements of
execution time are repeated several times, and the median value of measurements is
used finally.

At first, the efficiency of the proposed method is evaluated for 2- and 4-socket
ccNUMA platforms based on various Intel CPU architectures, including Skylake,
Broadwell, andHaswell. The performance results are shown in Table 3, which presents
the execution timeachieved for different numbers ofwork teams.This time is compared
with the execution time obtained for the original (basic) version, and for the pure
(3+1)D decomposition, so without partitioning the MPDATA workload across work
teams. For this aim, the partial S∗ and overall S speedups are calculated to show the
performance gains of the proposed method against the pure (3+1)D decomposition
and basic version, respectively.

123

7774 L. Szustak et al.

Table 4 Parallel efficiency achieved for different numbers of processors in 2- and 4-socket platforms,
expressed as percentage of linear scaling

Computing platform Number of utilized CPUs

1 (%) 2 (%) 3 (%) 4 (%)

A Intel Xeon Platinum 8180 100 97.91 94.06 91.84

B Intel Xeon E7-8890 v4 100 97.39 94.50 90.51

C Intel Xeon E5-2697 v3 100 99.01 – –

Themain conclusion from Table 3 is that the proposedmethod allows us to improve
radically the efficiency of the MPDATA application in comparison with the other
two versions. As expected, despite extra computations, the new MPDATA code is
executed much faster for all the tested platforms. The highest performance gain is
achieved for the 4-socket server with Skylake CPUs (platform A), where the new code
yields the partial speedup of about 6 times and overall speedup of about 10 times
against the pure (3+1)D decomposition and original version, respectively. But even
for the 2-socket server, the new implementation allows accelerating the MPDATA
application considerably, that follows from the speedup of 1.66× against the pure
(3+1)D decomposition.

The islands-of-cores strategy permits us to speed up the computations even when
using less work teams than the available processors. However, the performance gain is
considerably reduced in this case. For example, for the platform A, the execution time
is decreasing from about 225 s, for the pure (3+1)D decomposition, to about 140 s
when using 2 work teams mapped onto 4 processors. But partitioning the workload
across 4 work teams permits further decrease to only 37.1 s. In addition, Table 4
presents the parallel efficiency expressed as percentage of linear scaling. The tested
4-socket platforms demonstrate relatively small drops in efficiency with increasing
the number of processors. A point worth noting is 99% of linear scaling achieved on
the 2-socket platform.

Then, the performance and scalability of the proposed method are evaluated for
the SGI UV 3000 and UV 2000 servers. The obtained results are collected in Table 5,
which shows the execution time, and sustained performance Q (in Gflop/s), as well as
the utilization rate R = Q/Qmax, where Qmax is the theoretical peak performance of a
given server. Finally, we present the parallel efficiency Ep expressed as percentage of
linear scaling, that is achieved for different values of the number p of utilized CPUs.
For SGI UV 2000, the partial speedup S∗

p over the (3+1)D decomposition is included
as well.

As follows fromTable 5, themaximum sustained performance of about 1.75 Tflop/s
is obtained for the SGI UV 3000 server with the use of all the available processors
(p = 32), that corresponds to the utilization rate R of about 30%. In these benchmarks,
approximately 42% of the theoretical peak performance is achieved for a single CPU
of each server. The utilization rate R decreases finally to about 30 and 26% for,
respectively, 32 CPUs of SGI UV 3000 and 14 CPUs of SGI UV 2000. The SGI UV
3000 server allows achieving a relatively better parallel efficiency, that decreases from

123

Unleashing the performance of ccNUMAmultiprocessor… 7775

Table 5 Execution time achieved for the islands-of-cores strategy on the SGI UV 3000 and SGI UV 2000
servers, as well as sustained performance (Gflop/s), utilization rate (%), and parallel efficiency (%)

SGI UV 3000 Number p of utilized CPUs 1 4 8 16 32

Execution time (s) 497 127 69 37 24

Sustained performance Q (Gflop/s) 78.8 311.7 578.9 1096.4 1754.6

Utilization rate R (%) 42.85 42.35 39.33 37.24 29.80

Parallel efficiency Ep : % of linear scaling 100 98.26 90.57 84.49 65.66

SGI UV 2000 Number p of utilized CPUs 1 2 4 8 14

Execution time (s) 900 562 293 149 101

Sustained performance Q (Gflop/s) 42.7 68.5 131.9 264.4 390.1

Utilization rate R (%) 40.44 32.43 31.23 31.30 26.39

Parallel efficiency Ep : % of linear scaling 100 80.07 76.79 75.50 63.65

Partial speedup S∗
p 1.0 1.46 2.72 5.16 10.30

For SGI UV 2000, the speedup S∗
p over the (3+1)D decomposition is shown as well

Table 6 Performance comparison of the new implementation of MPDATA on all platforms

Computing platform CPUs Cores Time (s) Q (Gflop/s) R (%)

A 4× Intel Xeon Platinum 8180 4 112 37.1 1076.9 35.35

B 4× Intel Xeon E7-8890 v4 4 96 69.3 569.3 41.18

C 2× Intel Xeon E5-2697 v3 2 24 193.0 205.8 41.76

D 32× Intel Xeon E5-4627 v3 32 320 24.0 1754.6 29.80

E 14× Intel Xeon E5-4627 v2 14 112 101.1 390.1 26.39

about 98% for p = 4 to about 66% for p = 32. For the SGI UV 2000 server, we
obtain about 64%of linear scaling on 14processors. Finally, the analysis of the speedup
S∗
p achieved on SGI UV 2000 against the pure (3+1)D decomposition, permits us to

conclude that the performance gain of the proposedmethod increases with the growing
number of available processor.

The performance comparison of the new implementation of MPDATA for all the
considered platforms is provided in Table 6. It shows the execution time and sustained
performance Q, as well as the utilization rate R. The most powerful platform is the
SGI UV 3000 server that consists of 32 Intel Xeon Haswell CPUs, and allows us to
achieve the sustained performance of about 1.75 Tflop/s (29.8% of the peak). At the
same time, the 4-socket platform with the newest Intel Xeon Scalable (Skylake) CPUs
is able to execute the new MPDATA code with the sustained performance of around
1.08 Tflop/s (35.35% of the peak).

7 Conclusions

This paper meets the challenge of harnessing the heterogeneous communication
architecture of ccNUMA multiprocessors for heterogeneous stencil computations, an

123

7776 L. Szustak et al.

important example of which is the MPDATA application. We propose the method for
optimization of parallel implementation of heterogeneous stencil computations that is
a combination of the islands-of-core strategy and (3+1)D decomposition. The method
allows a better management of the trade-off between computation and communication
costs in accordance with features of different ccNUMA architectures.

The proposed method is an efficient and flexible solution which allows us to pro-
vide the performance portability across various ccNUMA architectures, including 2-
and 4-socket platforms with Intel CPUs, as well as the SGI UV 2000 and SGI UV
3000 servers. The resulting parallel code scales well with increasing the number of
processors, and despite extra computations execute computation radically faster then
both the original version and the code based on the (3+1)D decomposition only.

It is shown that the tested 4-socket platforms demonstrate relatively small drops in
parallel efficiencywith increasing the number of processors. For 2, 3, and 4 processors,
the parallel efficiency decreases relatively slightly, and achieves, respectively, about
97, 94, and 91% of linear scaling. The point worth noting is 99% of linear scaling
achieved on the 2-socket platform. For SGI UV 3000, we achieve about 66% of linear
scaling using all 32 processors,while for SGIUV2000 the parallel efficiency decreases
to about 64% of linear scaling when utilizing 14 processors.

The highest sustained performance of 1.75 Tflop/s (about 30% of the peak perfor-
mance) is obtained for the SGI UV 3000 server using 32 Intel Xeon Haswell CPUs
(320 cores in total). At the same time, the 4-socket platform with the newest Intel
Xeon Scalable (Skylake) CPUs executes the new MPDATA code on 112 cores with
the sustained performance of 1.08 Tflop/s (35% of the peak).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Cao X, Panchputre K, Du D (2016) Accelerating data shuffling in MapReduce framework with a
scale-up NUMA computing architecture. Simul Ser 48(4):122–129

2. Castro M, Francesquini E, Nguélé T.M, Méhaut J.F (2013) Analysis of computing and energy perfor-
mance of multicore, NUMA, and manycore platforms for an irregular application. In: Proceedings of
3rd Workshop on Irregular Applications: Architectures and Algorithms. ACM

3. Ciznicki M, Kulczewski M, Kopta P, Kurowski K (2015) Methods to load balance a GCR pressure
solver using a stencil framework on multi-and many-core architectures. Sci Program 2015:24

4. Culler D, Pal Singh J, Gupta A (1999) Parallel computer architecture: a hardware/software approach.
Morgan Kaufmann Publishers Inc., Burlington

5. Eltablawy A, Vladimirov A (2015) Capabilities of Intel AVX-512 in Intel Xeon scalable processors
(Skylake). Colfax International, Sunnyvale

6. Ferretti M (2017) Advanced computer architecture. Shared memory mutiprocessor. http://www-5.
unipv.it/mferretti/cdol/aca/Charts/07-multiprocessors-MF.pdf. Accessed Mar 2018

7. Guo J, Bikshandi G, Fraguela BB, Padua D (2009) Writing productive stencil codes with overlapped
tiling. Concurr Comput Pract Exp 21(1):25–39

123

http://creativecommons.org/licenses/by/4.0/
http://www-5.unipv.it/mferretti/cdol/aca/Charts/07-multiprocessors-MF.pdf
http://www-5.unipv.it/mferretti/cdol/aca/Charts/07-multiprocessors-MF.pdf

Unleashing the performance of ccNUMAmultiprocessor… 7777

8. Hagedorn B, Stoltzfus L, Steuwer M, Gorlatch S, Dubach C (2018) High performance stencil code
generation with LIFT. In: Proceedings of 2018 IEEE/ACM International Symposium Code Generation
and Optimization (CGO’18)

9. HPEServers and Server Systems (2018) https://www.hpe.com/us/en/servers.html. AccessedMar 2018
10. Intel 64 and IA-32 Architectures Optimization Reference Manual (2017) https://software.intel.com/

sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf. Accessed Mar
2018

11. Intel Xeon Platinum 8176 Scalable Processor Review (2018) https://www.tomshardware.com/reviews/
intel-xeon-platinum-8176-scalable-cpu,5120.html. Accessed Mar 2018

12. Lastovetsky A, Szustak L, Wyrzykowski R (2017) Model-based optimization of EULAG kernel on
Intel Xeon Phi through load imbalancing. IEEE Trans Parallel Distrib Syst 28(3):787–797

13. SGI UV 3000, UV 30 (2016) https://www.risc.jku.at/projects/mach2/4555.pdf. Accessed Mar 2018
14. SGI UV 3000 Sets New Throughput Records (2016) https://www.hpcwire.com/2016/03/25/sgi-posts-

new-spec-cpu2006-results/. Accessed Mar 2018
15. Smolarkiewicz P (2006) Multidimensional Positive Definite Advection Transport Algorithm: an

overview. Int J Numer Meth Fluids 50(10):1123–1144
16. Strugarek A, Beaudoin P, Brun AS, Charbonneau P, Mathis S, Smolarkiewicz PK (2016) Modeling

turbulent stellar convection zones: sub-grid scales effects. Adv Space Res 58(8):1538–1553
17. Szustak L (2018) Strategy for data-flow synchronizations in stencil parallel computations on multi-

/manycore systems. J Supercomput 74(4):1534–1546
18. Szustak L, Jakl O, Wyrzykowski R (2017) Islands-of-cores approach for harnessing SMP/NUMA

architectures in heterogeneous stencil computations. In: PaCT 2017, vol 10421. Lecture Notes in
Computer Science, pp 351–364

19. Szustak L, Rojek K, Gepner P (2014) Using Intel Xeon Phi coprocessor to accelerate computations in
MPDATA algorithm. In: PPAM 2013, vol 8384. Lecture Notes in Computer Science, pp 582–592

20. Szustak L, Rojek K, Olas T, Kuczynski L, Halbiniak K, Gepner P (2015) Adaptation of MPDATA
heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci Program 2015:10

21. Szustak L, Rojek K, Wyrzykowski R, Gepner P (2014) Toward efficient distribution of MPDATA
stencil computation on Intel MIC architecture. In: Proceedings of 1st International Workshop on High-
Performance Stencil Computations—HiStencils 2014. In conjunction with HiPEAC 2014, pp 51–56

22. Unat D et al (eds) (2014) Programming abstractions for data locality. http://web.eecs.umich.edu/
~akamil/papers/padal14report.pdf. Accessed Mar 2018

23. Yasui Y, Fujisawa K, Goh E.L, Baron J, Sugiura A, Uchiyama T (2016) NUMA-aware scalable graph
traversal on SGI UV systems. In: Proceedings of ACM Workshop on High Performance Graph Pro-
cessing. ACM, pp 19–26

24. Zhou X, Giacalone J.P, Garzarán M.J, Kuhn R, Ni Y, Padua D (2012) Hierarchical overlapped tiling.
In: Proceedings of 10th International Symposium on Code Generation and Optimization. ACM, pp
207–218

123

https://www.hpe.com/us/en/servers.html
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.tomshardware.com/reviews/intel-xeon-platinum-8176-scalable-cpu,5120.html
https://www.tomshardware.com/reviews/intel-xeon-platinum-8176-scalable-cpu,5120.html
https://www.risc.jku.at/projects/mach2/4555.pdf
https://www.hpcwire.com/2016/03/25/sgi-posts-new-spec-cpu2006-results/
https://www.hpcwire.com/2016/03/25/sgi-posts-new-spec-cpu2006-results/
http://web.eecs.umich.edu/~akamil/papers/padal14report.pdf
http://web.eecs.umich.edu/~akamil/papers/padal14report.pdf

	Unleashing the performance of ccNUMA multiprocessor architectures in heterogeneous stencil computations
	Abstract
	1 Introduction
	2 Overview of ccNUMA multiprocessor systems
	3 Introduction to parallelization of MPDATA application on shared memory systems
	4 Islands-of-cores strategy
	5 Optimization of MPDATA using the Island-of-core strategy
	6 Performance results
	7 Conclusions
	References

