
Journal of Parallel and Distributed Computing 145 (2020) 34–41

t
s
s
p
o
i

v
m
t

a
e
3
t
a

e
1
p
o

s

m
d

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Performance enhancement of a dynamic K-means algorithm through a
parallel adaptive strategy onmulticore CPUs
Giuliano Laccetti a, Marco Lapegna a,∗, Valeria Mele a, Diego Romano b, Lukasz Szustak c

a Department of Mathematics and Applications, University of Naples Federico II, Italy
b Institute for High-Performance Computing and Networking (ICAR), National Research Council (CNR), Italy
c Department of Computer Science, Czestochowa University of Technology, Poland

a r t i c l e i n f o

Article history:
Received 30 January 2020
Received in revised form 4 May 2020
Accepted 15 June 2020
Available online 25 June 2020

Keywords:
K-means clustering
Adaptive algorithm
Unsupervised learning
Multicore CPUs

a b s t r a c t

The K-means algorithm is one of the most popular algorithms in Data Science, and it is aimed to
discover similarities among the elements belonging to large datasets, partitioning them in K distinct
groups called clusters. The main weakness of this technique is that, in real problems, it is often
impossible to define the value of K as input data. Furthermore, the large amount of data used for
useful simulations makes impracticable the execution of the algorithm on traditional architectures. In
this paper, we address the previous two issues. On the one hand, we propose a method to dynamically
define the value of K by optimizing a suitable quality index with special care to the computational cost.
On the other hand, to improve the performance and the effectiveness of the algorithm, we propose a
strategy for parallel implementation on modern multicore CPUs.

© 2020 Elsevier Inc. All rights reserved.
w
b
d

d

i
s
i

∥

1. Introduction and related works

In the last thirty years, several theories, methodologies, and
ools have been introduced to learn from data, that is to under-
tand, comprehensively, complex phenomena through the analy-
is of large structured or unstructured datasets representing real
roblems. This wealth of knowledge has often changed its name
ver the years (for example, data mining or big data), and today
s commonly known as data science [10].

One of the most used tools in this field is a class of unsuper-
ised learning methods known as Clustering Algorithms, whose
ain aim is to collect similar data in the same group according

o a precise metric [29].
An extensive literature is available in the field, giving an over-

ll picture of the clustering approaches, in sequential computing
nvironments as well for parallel architectures [1,20,23,29,31,36,
9,40]. Very often, they use different taxonomies for the descrip-
ion of the algorithms, but all of them consider the K -means
lgorithm as one of the most useful computational tools.
It can be described as follows. Given a dataset consists of N

lements in the d-dimensional space S = {xn : xn ∈ Rd, n =

, . . . ,N}, and an integer K , the K -means algorithm defines a
artition PK = {Ck : Ck ⊆ S, k = 1, . . . , K } of the elements
f S in K non empty subsets Ck called clusters, each of them with

∗ Correspondence to: Department of Mathematics and Applications, Univer-
ity of Naples Federico II, via Cintia - Monte S. Angelo, 80126 Napoli, Italy.

E-mail addresses: giuliano.laccetti@unina.it (G. Laccetti),
arco.lapegna@unina.it (M. Lapegna), valeria.mele@unina.it (V. Mele),
iego.romano@cnr.it (D. Romano), lszustak@icis.pcz.pl (L. Szustak).
https://doi.org/10.1016/j.jpdc.2020.06.010
0743-7315/© 2020 Elsevier Inc. All rights reserved.
Nk elements, and where the elements showing some similarity
according to a given criterion are assigned to the same cluster.

In its classical version, the K -means algorithm identifies each
cluster with a representative ck, called centroid, computed with
the following vector operation:

ck =
1
Nk

∑
xn∈Ck

xn k = 1, . . . , K (1)

hile the similarity of an element xn with the centroids ck can
e measured using some metric in Rd, but usually, the Euclidean
istance

ist(xn, ck) = ∥xn − ck∥2 k = 1, . . . , K

s employed. With these definitions, the K -means algorithm as-
igns each xn to the cluster Cδ that minimizes the distance from
ts centroid cδ , that is:

xn − cδ∥2 = min
k=1,...,K

∥xn − ck∥2 (2)

The following Algorithm 1 then provides an outline of the
Basic K -means Algorithm.

Algorithm 1: Basic K -means Algorithm
(1) Define K clusters Ck, assigning to them Nk elements xn ∈ S.
(2) repeat

(2.1) for each cluster Ck compute the centroids ck as in (1):
(2.2) for each xn ∈ S

(2.2.1) search the cluster Cδ as in (2)
(2.2.2) assign xn to Cδ

endfor

until (no change in the reassignment)

https://doi.org/10.1016/j.jpdc.2020.06.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.06.010&domain=pdf
mailto:giuliano.laccetti@unina.it
mailto:marco.lapegna@unina.it
mailto:valeria.mele@unina.it
mailto:diego.romano@cnr.it
mailto:lszustak@icis.pcz.pl
https://doi.org/10.1016/j.jpdc.2020.06.010


G. Laccetti, M. Lapegna, V. Mele et al. / Journal of Parallel and Distributed Computing 145 (2020) 34–41 35

W
c
C
w
a
T

I
r
u

A detailed study of the convergence of the K -means algorithm
is reported in [34], and several papers address the mathematical
properties of the algorithm. They show, in particular, that the
final result strongly depends on several factors, such as the choice
of the initial partition in step (1) or the number of clusters K
supplied as input data.

For example, regarding the choice of the initial partition,
in [30], the K clusters are defined starting from a random se-
lection of K points of S chosen as centroids. In [2], the clusters
are identified by selecting their centroids as far away as pos-
sible among them. Similarly, in [19], a dataset preprocessing is
proposed to find well-separated points with a high density of ele-
ments surrounding them. In general, all the methods proposed for
this problem guarantee only a convergence to a local minimum.

The choice of the value of K is one of the main challenges in
the design of this algorithm. Very often, in several real and large
problems, the dataset does not show sufficiently clear patterns
to define such a value as input data. If it is defined too small,
there is a high chance that dissimilar objects will be gathered in
the same cluster, while if it is set too large, there is the risk that
related elements will be scattered in separate clusters.

For the above, several researchers introduce methods to set
the value of K dynamically at run time, so to realize a trade-
off between efficiency (a small value of K ) and accuracy (a high
affinity of elements in each cluster). As an example, in [3] the
authors iteratively determine the values of K by merging two
clusters when the distance between the centroids is smaller than
an inter-clusters tolerance or by dividing the cluster with a stan-
dard deviation of his points (that is a measure of their affinity)
greater than an intra-cluster threshold. A similar approach is
described in [21], where the measures of the intra and inter-
cluster distances (the so-called silhouette) are averaged. Lastly,
in [4], the authors introduce a method based on the maximization
of a function based on the sum of squares of the distances among
elements belonging to the same cluster and different clusters.

Finally, in the last years, further efforts have been addressed
toward parallel implementations of the K -means algorithm in
several high-performance computing environments. Significant
algorithms are described, for example, in [11] for distributed
memory architectures, in [22,24,33] for multicore CPUs and in [7,
8] for GPUs based systems. Almost all these studies exploit the
role that a large amount of data can play in an implementation
based on the data parallelism programming model.

Our work joins this research trend introducing a parallel adap-
tive K -means algorithm, with new features respect to the other
works. On the one hand, it defines the value of K dynamically
by dividing only selected clusters with non-similar elements, so
to reduce the number of displacements of the items among the
clusters. On the other hand, it improves the performance of the
algorithm, implementing it in a multicore CPUs based computing
environment by using two different parallelization strategies.

The present paper is, therefore, organized as follows: in Sec-
tion 2 we introduce the new parallel adaptive K-means algorithm
describing the clusters generation procedure and the paralleliza-
tion strategy; in Section 3 we report the implementation details
of the algorithm with special care to the data structure organi-
zation; in Section 4 we show the results obtained from various
experiments aimed to validate the new algorithm; in Section 5
we discuss the results, and in Section 6 we conclude the work.

2. A new parallel adaptive K -means algorithm

This section has a double aim: from the one hand, we intro-
duce a methodology aimed to dynamically define the number
of clusters with a reduced computational cost of the algorithm,
and, on the other hand, we propose a parallel implementation in
multicore environments.
A widespread method to define the value of K without con-
sidering it as an input data is to execute the Basic K -means
Algorithm several times, with an increasing value of K , until a
given quality index, used as a measure for the goodness of the
solution, satisfies the user requirements (e.g., [35]). To this aim,
it is possible to find a large variety of quality indexes in the
literature (see, for example, [15]). One of the most used index
to determine the number of clusters existing in a data set is the
Root-Mean-Square Standard Deviation (RMSSD) that represents
a measure of the average affinity of the elements grouped inside
the several clusters of the partition PK :

RPK =

[∑K
k=1

∑
xn∈Ck

∥sn − ck∥2
2

d(N − K )

]1/2

(3)

hen the number of clusters K increases, the (3) initially de-
reases but, when a good affinity among the elements in each
k ∈ PK is reached, there are no further improvements. In other
ords, it is possible to increase the number of clusters until
dding a new cluster does not give a significant reduction of RPK .
he previous approach is known as the ‘‘Elbow’’ method [18].
From the above it is, therefore, possible to design the following

terative K -means Algorithm (Algorithm 2) executing the Algo-
ithm 1 several times with the value of K increasing at each step
ntil the RPK index shows no further improvements:

Algorithm 2: Iterative K-means Algorithm
(1) Set the number of clusters K = 0
(2) repeat

(2.1) Increase the number of clusters K = K + 1
(2.2) Define K clusters Ck, assigning to them Nk elements

of S.
(2.3) repeat

(2.3.1) for each cluster Ck compute the centroids ck
as in (1)

(2.3.2) for each xn ∈ S
(2.3.2.1) search the cluster Cδ as in (2)
(2.3.2.2) assign xn to Cδ

endfor
until (no change in the reassignment)

(2.4) update RPK as in (3)
until (the variation of RPK is smaller than a given

threshold)

Let consider now the Computational Cost (CC) of the previous
Algorithm 2, paying special attention to the kernels inside the
iterative structure 2.3. At this regard, it is easy to show that the
computation of the centroids ck in the Step 2.3.1, by using the (1),
needs

CC2.3.1 =

K∑
k=1

dNk = Nd floating points operations

whereas the (2), used for the search of the new cluster of each
element xn in the step 2.3.2.1, requires

CC2.3.2.1 = NKd floating-point operations

Finally, let consider the cost of step 2.3.2.2 of Algorithm 2. It is a
critical section of the procedure because it strongly depends on
the initial partition PK of the dataset S defined at the beginning of
each iteration (step 2.2). With an inappropriate initial partition,
there is a high risk that a large number of displacement of
elements xn among the clusters Ck in step 2.3.2.2 occurs, before
the stopping criterion of the iterative structure 2.3 is satisfied.
For such reason, we propose a strategy designed to control such
a number.



36 G. Laccetti, M. Lapegna, V. Mele et al. / Journal of Parallel and Distributed Computing 145 (2020) 34–41

i

G
t

p
t
C
t

C

t
s
f

t
i
t
s
c
o
a
o

A

s
t
c
a
h

i
i
o
p

p

p

i
t
(
w
a
d
s
d

w
s
α
t

S

r
w
d

2
a
g
i
o
s
t
c
f
r

s

Our idea is based on the assumption that, at the iteration K ,
the elements of S are already grouped according to their similar-
ty, in the K − 1 clusters of the partition PK−1. Many of them do
not need to be displaced so that it is possible to concentrate the
attention only on the clusters showing still little affinity among
the elements. A traditional way to compute the similarity of a set
of NK elements is through the standard deviation:

Vk =

√ 1
Nk − 1

Nk∑
n=1

∥xn − ck∥2
2

reater the value Vk is, more distant the elements xn from cen-
roid ck are, and the cluster consists of dissimilar elements.

The key choice of our strategy is then based on the reuse of the
artition PK−1 defined in the previous iteration K − 1, avoiding
o start with a generic partition in step 2.2. More precisely, let
γ ∈ PK−1 be the cluster with the largest standard deviation at
he iteration K − 1, that is:

γ such that Vγ = max
k=1,...,K−1

Vk (4)

he proposed algorithm divides only this cluster into two new
ubclusters Cα and Cβ , and defines the initial partition PK as
ollows:
K = 0 P0 = {C0} where C0 ≡ S
K ≥ 1 PK = PK−1 − {C∗

K−1} ∪ {Cα, Cβ}
(5)

In this regard, we remark that the strategy of reorganizing only
he subsets of partitions showing poor values of some quality
ndex is an assessed approach in the design of the so-called adap-
ive algorithms in other scientific computing areas. For example,
everal adaptive algorithms for numerical integration [26,27] or
omputational fluid dynamics [17,38] refine only the subdomains
f a partition where the discretization error is significant. Similar
daptive approaches are used to develop modified versions also
f the K -means algorithm (e.g., [5]).
From what has been said, we, therefore, propose the following

daptive K -means Algorithm:

Algorithm 3: Adaptive K-means Algorithm
(1) Set the number of clusters K = 0
(2) repeat

(2.1) Increase the number of clusters K = K + 1
(2.2) find the cluster Cγ as in (4)
(2.3) define the new partition of clusters PK as in (5)
(2.4) repeat

(2.4.1) for each cluster Ck compute the centroids ck
as in (1)

(2.4.2) for each xn ∈ S
(2.4.2.1) search the cluster Cδ as in (2)
(2.4.2.2) assign xn to Cδ

endfor
until (no change in the reassignment)

(2.5) update RPK as in (3)
until (the variation of RPK is smaller than a given

threshold)

Today, all the most powerful high-performance computing
ystems are based on multicore CPUs (e.g., www.top500.org) so
hat an efficient implementation of algorithms on these devices
an be considered as the first level of a complex software stack,
ble to solve real-world problems in these environments with
igh performances [37]. In a multicore CPU, P computing units

(the cores) share the same main memory, each of them has a
private set of registers so that the operating system can dispatch
on them concurrent threads, allowing the implementation of
the algorithm based on the shared memory Multiple Program
Multiple Data paradigm.
An analysis of Algorithm 3 shows that the K -means algorithm
s well suited for implementations on high-end parallel comput-
ng environments based on multicore CPUs. More precisely, we
bserve that it is possible to identify in it at least two forms of
arallelism:

arallelism at clusters level. In this case, the number of clusters
K determines the degree of parallelism. More precisely the
clusters Ck with k = 1, . . . , K are distributed among the P
threads. This approach finds a natural application in step
2.4.1.

arallelism at elements level. In this case, the number of ele-
ments N determines the degree of parallelism. More pre-
cisely the elements xn with n = 1, . . . ,N are distributed
among the P threads. This approach finds a natural appli-
cation in step 2.4.2.

The critical task in Algorithm 3 is then the step 2.4.2.2. In such
nstruction, some elements xn ∈ S are assigned to new clusters
aking into account their distance from the centroids defined in
2). This displacement is the cause of a high risk of race condition
hen different threads attempt to access the data structures that
re used to describe the clusters (see the next section for more
etails on the implementation issues). Such a step is then the only
equential task of Algorithm 3, and it may be the reason for the
ecay of the algorithm efficiency.
Let TP and Ts respectively be the running time of the algorithm

ith P threads and the time required to run the sequential
ections of the algorithm. Then the Serial Fraction is defined as
= Ts/T1, and the Amdhal law states that the Speed-up SP and

he Efficiency EP can be respectively represented as follows:

P =
T1
TP

=
1

α + (1 − α)/P
EP =

T1
PTP

=
1

αP + (1 − α)
(6)

From (6), we observe that also for a moderate value of α, the
Speed-up and the Efficiency can be strongly degraded, so that it is
of paramount importance to start with a suitable partition in the
step 2.3 designed to reduce the total number of the displacements
of the elements in the step 2.4.2.2.

3. Implementation details

To better describe the new parallel Adaptive K -means Algo-
ithm, in this section, we report some implementation details,
ith particular attention to the data structures that are used to
escribe the management of the clusters (see also Fig. 1).
To store the N elements xn, our implementation uses a

-dimensional N × d static array S, where each row represents
d-dimensional element of the dataset. This choice is due to the
reater efficiency in accessing the elements compared to other
mplementations based on dynamic data structures such as lists
r trees. In any case, we recall that one of the most expensive
teps of the algorithm is the displacement of the elements among
he clusters (step 2.4.2.2). Each displacement has a not negligible
ost of O(d) memory accesses with a severe impact on the per-
ormance so that our algorithm leaves the physical order of the
ows of S unchanged to reduce such a cost.

To describe the structure of each cluster Ck, we used a pointers
array PT , where each component points to an element of the
dataset. In the array PT , each cluster is therefore defined as a
et of contiguous items, each of them pointing to a row of S
representing an element xn of the cluster Ck. The new partition
PK in step 2.4.2.2, is therefore achieved by exchanging only
components of PT , each of them with a cost of O(1) memory
accesses. We remark that the array PT is shared among all threads
so that any change in it has to be carried out in a critical section

http://www.top500.org


G. Laccetti, M. Lapegna, V. Mele et al. / Journal of Parallel and Distributed Computing 145 (2020) 34–41 37
Fig. 1. Organization of the main data structures in the parallel adaptive K -means algorithm.
with exclusive access by each thread. As the number of memory
accesses in the step 2.4.2.2 decreases, then the value of α in (6)
is reduced, with an improvement of the speed-up and efficiency
of the algorithm.

In our implementation, each cluster Ck consists of Nk rows of S
referenced by contiguous pointers in PT , and it is fully described
by a Cluster Descriptor (CDk). It is a data structure containing:

• k: a cluster identifier
• ck: the centroids of the cluster
• Fk: a pointer to the first of the contiguous items of PT

referencing the cluster elements
• Nk: the number of cluster elements
• Vk: the standard deviation of the elements of the cluster

Finally, a table of pointers called Cluster Table CT provides
direct access to the Cluster Descriptors CDk.

With the described data structures organization, it is then
possible to efficiently manage all information required in Algo-
rithm 3.

4. Experimental results

We tested the accuracy and the efficiency of the proposed
Adaptive K -means Algorithm running several experiments using
the HPC cluster available at the Department of Science and Tech-
nologies of the University of Naples Parthenope. This facility is a
computing environment where each node is equipped with two
Intel Xeon 16-core 5218 CPUs running at 2.3 GHz for a total of
32 computing cores per node, and 192 Gbytes of main memory.
In this system, we implemented the Algorithm 3 in C language
using the POSIX thread library for the thread management.

As a benchmark for our experiments, we used the following
datasets with different dimension and from different applica-
tion areas, taken from the University of California (UCI) Machine
Learning Repository [12]:

Iris [13]. This problem is based on a quite small but very popular
dataset used for multivariate classification. The dataset
contains N = 150 instances of iris flowers classified in K =

3 classes of Nk = 50 instances, each of them representing

different types of iris plants. The items are described by
d = 4 attributes representing respectively the width and
length of petals and sepals.

Letters [14]. In this case, the problem is represented by a larger
dataset with N = 20 000 black-and-white rectangular im-
ages, each of them representing one of the K = 26 capital
letters of the English alphabet. Each letter is described by
d = 16 attributes (e.g., the dimension of the character, the
number of the edges, the position of the black pixels in the
image, and other graphical features).

Wines [6]. This dataset contains N = 4898 instances of Por-
tuguese wines described by d = 11 attributes (e.g., acidity,
sugar, sulfate, alcohol, and other organoleptic features).
The wines are grouped in K = 11 classes according to their
quality (from 0 to 10).

Banknotes [16]. This problem is described by a dataset contain-
ing N = 1372 instances representing images that were
taken from genuine and forged banknote-like specimens.
Some mathematical transformations were used to extract
d = 4 features from images, that are classified in K = 2
clusters (true or false).

Cardio [9]. In this dataset, N = 2126 fetal cardiotocographic
reports (CTGs) have been processed and d = 21 diagnostic
features measured (e.g., acceleration, pulsation, short and
long term variability, and other physiological features.). We
use the dataset to classify the elements concerning K = 10
morphologic patterns.

Clients [32]. In this dataset, data are related to the direct mar-
keting campaigns of a banking institution. The marketing
campaigns were based on N = 45 211 phone calls to access
if a bank deposit would be or not subscribed (that is K = 2
clusters). We classify the elements according to d = 16
attributes (age, job, education, marital status, and other
individual features).

The first set of experiments is aimed to evaluate the effective-
ness of the Adaptive K -means Algorithm (Algorithm 3) with re-

spect to the Iterative K -means Algorithm (Algorithm 2), through



38 G. Laccetti, M. Lapegna, V. Mele et al. / Journal of Parallel and Distributed Computing 145 (2020) 34–41

1
p
c
g

f
(
t
I
e
s
P

t
K
t

P

M

(
T

t
o
c

p
S
r
a
a
a
s
t
s
a
t

o
t
t
b
m

Table 1
Performance of Algorithm 2 and Algorithm 3.
Problem K Algorithm 2 Algorithm 3

Disp Time Disp Time

Iris 3 67 5.4e−4 59 5.8e−4
Letters 26 1001349 55.9 130801 23.8
Wines 11 81095 2.6 18507 9.1e−1
Banknote 2 682 2.7e−3 682 2.9e−3
Cardio 10 25158 4.3e−1 6553 2.5e−1
Clients 2 30734 2.3 30734 2.3

Table 2a
Performance of Algorithm 3 on the Iris, Letters and Wines problems.
P Iris Letters Wines

Time SP EP Time SP EP Time SP EP
2 3.4e−4 1.70 0.85 13.22 1.80 0.90 5.2e−1 1.74 0.87
4 2.5e−4 2.32 0.58 7.00 3.48 0.87 3.3e−1 2.72 0.68
8 2.9e−4 2.00 0.25 4.31 5.52 0.69 2.5e−1 3.60 0.45
16 3.3e−4 1.76 0.11 3.31 7.20 0.45 2.2e−1 4.16 0.26
32 3.6e−4 1.60 0.05 3.23 7.36 0.23 2.0e−1 4.48 0.14

Table 2b
Performance of Algorithm 3 on the Banknotes, Cardio and Clients problems.
P Banknotes Cardio Clients

Time SP EP Time SP EP Time SP EP
2 1.7e−3 1.70 0.85 1.4e−1 1.74 0.87 1.35 1.70 0.85
4 1.2e−3 2.44 0.61 9.2e−2 2.60 0.65 9.4e−1 2.44 0.61
8 1.3e−3 2.16 0.27 7.2e−2 3.44 0.43 9.9e−1 2.32 0.29
16 1.4e−3 2.08 0.13 6.7e−2 3.68 0.23 9.5e−1 2.40 0.15
32 1.3e−3 2.24 0.07 6.5e−2 3.84 0.12 8.9e−1 2.56 0.08

a comparative analysis of the total execution time with P =

thread. Table 1 shows such results reporting, for each test
roblem, the total number of elements displaced among the
lusters (disp) and the total elapsed time in seconds (time) for the
eneration of the reported number of clusters K .
The second set of experiments is aimed to evaluate the per-

ormance of Algorithm 3 through the values SP and EP given by
6) up to 32 computing cores. For these experiments, we remark
hat, although each core can run more than one thread with the
ntel Hyperthreading Technology, we only used one thread for
ach core. Tables 2a and 2b report the total running time in
econds (time), the Speed-up (SP ), and the Efficiency (EP ) by using
= 2, 4, 8, 16 and 32 threads for the six test problems.
For a complete analysis, we also compared the performance of

he Adaptive K -means Algorithm (Algorithm 3) with the Iterative
-means Algorithm (Algorithm 2) and other implementations of
he k-means algorithm on multicore CPUs:

kmeans, described in [33]. It is based on a parallel strategy at
Cluster Level similar to that implemented in our Algorithm
3, but with a fixed value for the number of cluster K . The
algorithm has been run on a problem with N = 1 000 000
items with d = 2 attributes. The number of generated
clusters is K = 10.

cKmeans, described in [24]. It is based on the concept of trans-
actional memory to guarantee thread safety indirectly. The
algorithm has been run on a problem with N = 100 000
items with d = 500 attributes. The number of generated
clusters is K = 20.

Algorithm 2 and Algorithm 3 are run on the ‘‘Letters’’ problems
N = 40 000 items, d = 16 attributes and K = 26 clusters).
able 3 reports the results of such an experiment.
Finally, the last set of experiments studies the reduction of

he Root-Mean-Square Standard Deviation (3) when the number
f clusters K increases. This trial represents a critical test be-
ause it allows the evaluation of the quality of the partition P
K i
Table 3
Performance comparison of Algorithm 3 with other parallel implementation of
the K-means algorithm.
P Pkmeans [33] McKmeans [24] Algorithm 2 Algorithm 3

SP EP SP EP SP EP SP EP
2 1.78 0.89 1.76 0.84 1.68 0.84 1.80 0.90
4 3.22 0.80 1.98 0.62 2.50 0.62 3.48 0.87
8 n.a. n.a. 2.30 0.43 3.43 0.43 5.52 0.69
16 n.a. n.a. n.a. n.a. 3.85 0.24 7.20 0.45
32 n.a. n.a. n.a. n.a. 4.64 0.15 7.36 0.23

generated by Algorithm 3, compared to that of the traditional
K -means algorithm. More precisely, we are interested in verifying
that a smaller number of displacements in Algorithm 3 does not
produce a distribution of the elements among the clusters of
lower quality than that provided by Algorithm 2. To this aim,
we compared the Root-Mean-Square Standard Deviations RPK
of both Algorithm 2 and Algorithm 3 for the six selected test
problems with a variable value of K . The graphs in Fig. 2 report
such results.

5. Discussion

From Table 1, we observe better effectiveness of the Algorithm
3 with respect to Algorithm 2, measured in terms of the number
of elements displaced among the clusters and the total execution
time, mainly for large values of K (that is the datasets related to
the Letters, Wines, and Cardio problems). More precisely, when
the number of iterations is large, we can better appreciate the
effects of the adaptive strategy aimed to reuse the partition
already defined at the previous iterations, with a smaller number
of elements that need to be moved among the clusters. For a little
value of K (namely Clients, Iris, and Banknotes problems), the
experiments do not report significant benefits for Algorithm 3. In
these cases, we register a similar number of displacements and
about the same execution time because the adaptive strategy is
applied only for a small number of iterations.

Parallel performance reported in Tables 2a and 2b shows a
strong dependence of the Speed-up and the Efficiency on the
number of clusters. The higher the value of K , the higher the
Efficiency we get. This aspect can be explained through the two
forms of parallelism, at clusters level and items level, we intro-
duced in Algorithm 3. A significant K increases the concurrency
and allows full usage of the p computing units. On the other hand,
because the degree of concurrency is independent of the number
of attributes, we do not observe significant differences among
Speed-up and Efficiency for problems with different values for d.

From Table 3, it is interesting to observe that, with the pro-
osed adaptive strategy, Algorithm 3 shows significantly better
peed-up and Efficiency with respect to a parallel version of Algo-
ithm 2. About this aspect, we have previously stated in Sections 2
nd 3, that the displacements of the items xn among the clusters
re implemented through a rearrangement of the pointers in the
rray PT occurring in a sequential section of the algorithm. This
tep is, therefore, the cause of a significant Serial Fraction α in
he (6), so that it has a disruptive impact on SP and EP . With a
maller computational cost for this step in Algorithm 3, we then
lso reduce the Serial Fraction, with a significant improvement of
he Speed-up and Efficiency.

Furthermore, regarding the performance comparison with
ther algorithms reported in the same Table 3, it is first evident
hat the Adaptive K -means Algorithm (Algorithm 3) outperforms
he McKmeans algorithm based on the transactional memory. We
elieve that the bad performance of the McKmeans algorithm is
otivated by the sequential access to shared memory with high
dle time. In essence, the transactional memory model is primarily



G. Laccetti, M. Lapegna, V. Mele et al. / Journal of Parallel and Distributed Computing 145 (2020) 34–41 39

d
h
l
i
a
f
p

S
s

Fig. 2. RPK varying the number of iteration for Algorithm 2 (dashed line) and Algorithm 3 (solid line), for the six test problems.
esigned to avoid race conditions, but it is not a guarantee of
igh performance. The Pkmeans algorithm, instead, uses a paral-
elization strategy at Cluster Level similar to those implemented
n our Algorithm 3, with comparable performance values. In
ny case, we emphasize that the Pkmeans algorithm requires a
ixed number of cluster K , while our Algorithm 3 overcomes this
roblem with the adaptive procedure described in Section 3.
Finally, from the analysis of the values of the Root-Mean-

quare Standard Deviation (3) reported in 2, we register a very
imilar behavior of the Iterative K -means Algorithm (Algorithm
2) and the Adaptive K -means Algorithm (Algorithm 3), very often
with almost identical graphs. More precisely, in our experiments,
we measured a difference of no more than 5% between the Root-
Mean-Square Standard Deviation RPK related to the partitions
generated by the two algorithms, asserting the effectiveness of
the Adaptive K -means Algorithm proposed in Section 2.
6. Conclusions

This paper describes our studies aimed to improve the perfor-
mance of the K -means algorithm in case the number of clusters
K is not available as input data. This issue is a common sit-
uation in real applications so that traditional approaches are
based on several runs of the algorithm with different values of
K attempting to optimize some quality index, with a high risk
to increase the computational cost. The method we introduced is
based on an adaptive procedure aimed to minimize the number
of displacements of the elements of the dataset among the clus-
ters, preserving, at the same time, the clusters of the partition
with small values of the standard deviation. Furthermore, the
paper addresses the problem of the algorithm implementation
in a multicore CPU based system, giving special attention to
the reduction of the Serial Fraction so to improve Speed-up and
Efficiency. Several experiments confirm these expectations: the



40 G. Laccetti, M. Lapegna, V. Mele et al. / Journal of Parallel and Distributed Computing 145 (2020) 34–41
proposed algorithm achieves better performance and efficiency
with respect to other approaches, mainly for large values of the
number of clusters K , showing, at the same time, similar values
of the Root-Mean-Square Standard Deviation, used as a measure
of the global quality of the generated partition.

We already planned future works aimed to integrate, in a
single hybrid implementation, the Adaptive K -means Algorithm
with other algorithms designed for different advanced comput-
ing environments, such as GPUs based or distributed memory
computing systems [25,28].

CRediT authorship contribution statement

Giuliano Laccetti: Conceptualization, Supervision, Resources.
Marco Lapegna: Conceptualization, Methodology, Investigation,
Writing - review & editing. Valeria Mele: Data curation, Software,
Writing - original draft. Diego Romano: Software, Validation,
Writing - original draft. Lukasz Szustak: Software, Validation,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was supported by institutional funding provided by
the universities of the researchers.

References

[1] A. Ahmad, S.S. Khan, Survey of state-of-the-art mixed data clustering
algorithms, IEEE Access 7 (2019) 31883–31902.

[2] D. Arthur, S. Vassilvitskii, K-means++: The advantages of careful seeding,
in: Proc. of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2007, pp. 1027–1035.

[3] G.H. Ball, D.J. Hall, ISODATA, A Novel Method of Data Analysis and Pattern
Classification, Technical Report, DTIC Document, 1965.

[4] T. Calinski, J. Harabasz, A dendrite method for cluster analysis, Comm.
Statist. Theory Methods 3 (1974) 1–27.

[5] H. Chen, X. We, J. Hu, Proc. SPIE 6788, MIPPR 2007: Pattern Recognition
and Computer Vision, 67882A, 2007.

[6] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine
preferences by data mining from physicochemical properties, in: Decision
Support Systems, Vol. 47, Elsevier, 2009, pp. 547–553.

[7] S. Cuomo, V. De Angelis, G. Farina, L. Marcellino, G. Toraldo, A GPU-
accelerated parallel K-means algorithm, Comput. Electr. Eng. 75 (2019)
262–274.

[8] S. Cuomo, P. De Michele, E. Di Nardo, L. Marcellino, Parallel implementation
of a machine learning algorithm on GPU, Int. J. Parallel Program. 46 (2018)
923–942.

[9] A. de Campos, et al., SisPorto 2.0 a program for automated analysis of
cardiotocograms, J. Matern. Fetal Neonatal Med. 5 (2000) 311–318.

[10] V. Dhar, Data science and prediction, Commun. ACM 56 (2013) 64–73.
[11] I.S. Dhillon, D.S. Modha, A data-clustering algorithm on distributed memory

multiprocessors, in: M.J. Zaki, C.T. Ho (Eds.), Large-Scale Parallel Data
Mining, in: Lecture Notes in Computer Science, vol. 1759, Springer, Berlin,
Heidelberg, 2002.

[12] D. Dua, C. Graff, UCI Machine Learning Repository, University of California,
School of Information and Computer Science, Irvine, CA, 2017, http://
archive.ics.uci.edu/ml.

[13] R. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Wiley &
Sons, 1973, (Q327.D83).

[14] P.W. Frey, D.J. Slate, Letter recognition using Holland-style adaptive
classifiers, Mach. Learn. 6 (1991) 161–182.

[15] D.G. Gan, C. Ma, J. Wu, Data Clustering: Theory, Algorithms, and Appli-
cations, in: ASA-SIAM Series on Statistics and Applied Probability, SIAM,
Philadelphia, ASA, Alexandria, VA, 2007.

[16] S. Glock, E. Gillich, J. Schaede, V. Lohweg, Feature extraction algorithm
for banknote textures based on incomplete shift invariant wavelet packet
transform, in: DAGM-Symposium 2009, pp. 422–431.

[17] W. Haase, K. Misegades, M. Naar, Adaptive grids in numerical fluid
dynamics, Numer. Methods Fluids 5 (1985) 515–528.
[18] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation
techniques, J. Intell. Inf. Syst. 17 (2001) 107–145.

[19] J.A. Hartigan, M.A. Wong, Algorithm AS 136: A k-means clustering
algorithm, J. R. Stat. Soc. Ser. C Appl. Stat. 28 (1979) 100–108.

[20] A. Joshi, R. Kaur, A review: Comparative study of various clustering
techniques in data mining, Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3
(2013) 55–57.

[21] L. Kaufman, P.J. Rousseeuw, et al., Finding Groups in Data: An Introduction
to Cluster Analysis, J. Wiley & Sons, 1990.

[22] K. Kerdprasop, N. Kerdprasop, Parallelization of k-means clustering on
multi-core processors, in: Proc. 10th WSEAS International Conference
on Applied Computer Science, ACS’10, World Scientific and Engineering
Academy and Society (WSEAS), 2010, pp. 472–477.

[23] W. Kim, Parallel clustering algorithms. Survey, CSC 8530 Parallel
Algorithms, spring, 2009.

[24] J.M. Kraus, H.A. Kestler, A highly efficient multi-core algorithm for
clustering extremely large datasets, BMC Bioinformatics 11 (2010) art. 169.

[25] G. Laccetti, M. Lapegna, V. Mele, A loosely coordinated model for heap-
based priority queues in multicore environments, Int. J. Parallel Program.
44 (2016) 901–921.

[26] G. Laccetti, M. Lapegna, V. Mele, D. Romano, A study on adaptive algo-
rithms for numerical quadrature on heterogeneous GPU and multicore
based systems, in: Proc. 10th International Conference on Parallel Process-
ing and Applied Mathematics, PPAM 2013, in: Lecture Notes in Computer
Science, vol. 8384, 2013, pp. 704–713.

[27] G. Laccetti, M. Lapegna, V. Mele, D. Romano, A. Murli, A double adap-
tive algorithm for multidimensional integration on multicore based HPC
systems, Int. J. Parallel Program. 40 (2012) 397–409.

[28] G. Laccetti, M. Lapegna, R. Montella, A scalable unified model for dynamic
data structures in message passing (clusters) and shared memory (multi-
core CPUs) computing environments, in: Proc. 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2018, 2018,
pp. 599–608.

[29] R.S.M. Lakshmi Patibandla, N. Veeranjaneyulu, Survey on Clustering
Algorithms for Unstructured Data, Springer Verlag, Singapore, 2018.

[30] J. MacQueen, Some methods for classification and analysis of multivariate
observations, in: Proc. of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Vol. 1, Berkeley, CA, USA, 1967, pp. 281–297.

[31] A. Mohebi, S. Aghabozorgi, T. Ying Wah, T. Herawan, R. Yahyapour, Iterative
big data clustering algorithm: a review, Softw. Pract. Exp. 46 (2016)
107–129.

[32] S. Moro, P. Cortez, P. Rita, A data-driven approach to predict the success
of bank telemarketing, Decis. Support Syst. 62 (2014) 22–31.

[33] I.K. Savvas, D. Tselios, Combining distributed and multi-core program-
ming techniques to increase the performance of k-means algorithm,
in: Proc. IEEE 26th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE, 2017, pp. 95–100.

[34] S.Z. Selim, M.A. Ismail, K-means-type algorithms: A generalized conver-
gence theorem and characterization of local optimality, IEEE Trans. Pattern
Anal. Mach. Intell. 6 (1984) 81–87.

[35] A. Shafeeq, K.S. Hareesha, Dynamic Clustering of Data with Modified k-
means algorithm, in: 2012 International Conference on Information and
Computer Networks, Vol. 27, ICICN 2012, IACSIT Press, Singapore, 2012,
IPCSIT.

[36] F. Shah, H. Doshi, M. Shah, M. D’silva, A comparative study on data mining
clustering algorithms, Int. J. Res. Edu. Sci. Methods 6 (2018) 1–5.

[37] L. Szustak, P. Bratek, Performance portable parallel programming of het-
erogeneous stencils across shared-memory platforms with modern Intel
processors, Int. J. High-Perform. Comput. Appl. 33 (2019) 507–526.

[38] J.F. Thompson, A survey of dynamically-adaptive grids in the numerical
solution of partial differential equations, Appl. Numer. Math. 1 (1985)
3–27.

[39] X. Wang, A survey of clustering algorithms based on parallel mecha-
nism, in: Computer Modeling, Simulation and Algorithm, CMSA 2018, in:
Advances in Intelligent Systems Research Series, Atlantis Press, 2018.

[40] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Ann. Data
Sci. 2 (2015) 165–193.

Giuliano Laccetti is a full professor of computer sci-
ence at the University of Naples Federico II, Italy.
He received his Laurea degree (cum laude) in Physics
from the University of Naples. His main research in-
terests are Mathematical Software, High-Performance
Architecture for Scientific Computing, Distributed Com-
puting, Grid, and Cloud Computing, Algorithms on
emerging hybrid architectures (CPU+GPU, . . . ), Internet
of Things. He has been organizer and chair of several
Workshops joint to larger International Conferences. He
is the author (or co-author) of about 100 papers pub-

lished in refereed international Journals, international books, and International
Conference Proceedings.

http://refhub.elsevier.com/S0743-7315(20)30317-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb2
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb2
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb2
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb2
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb2
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb3
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb3
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb3
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb4
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb4
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb4
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb6
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb6
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb6
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb6
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb6
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb7
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb7
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb7
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb7
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb7
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb8
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb8
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb8
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb8
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb8
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb9
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb9
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb9
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb10
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb11
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb13
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb13
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb13
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb14
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb14
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb14
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb15
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb15
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb15
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb15
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb15
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb17
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb17
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb17
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb18
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb18
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb18
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb19
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb19
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb19
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb20
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb20
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb20
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb20
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb20
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb21
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb21
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb21
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb22
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb22
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb22
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb22
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb22
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb22
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb22
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb23
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb23
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb23
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb24
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb24
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb24
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb25
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb25
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb25
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb25
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb25
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb26
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb27
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb27
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb27
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb27
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb27
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb29
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb29
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb29
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb32
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb32
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb32
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb34
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb34
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb34
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb34
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb34
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb35
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb35
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb35
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb35
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb35
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb35
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb35
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb36
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb36
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb36
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb37
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb37
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb37
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb37
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb37
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb38
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb38
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb38
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb38
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb38
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb40
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb40
http://refhub.elsevier.com/S0743-7315(20)30317-8/sb40


G. Laccetti, M. Lapegna, V. Mele et al. / Journal of Parallel and Distributed Computing 145 (2020) 34–41 41

H
d

Marco Lapegna received a Ph.D. in Applied Mathemat-
ics and Computer Science in 1991 from the University
of Naples Federico II. He worked from 1991 until 2001
as Assistant Professor, and now he is an Associate
Professor of Computer Science at the University of
Naples Federico II. His research activity is aimed at
the development of high performance distributed and
parallel algorithms for computational mathematics for
advanced architecture environments. He participated in
projects funded by Italian and international institutions,
and he is author of several scientific publications.

is teaching activity concerns computer programming, operating systems, and
istributed/parallel computing.

Valeria Mele today is a Researcher at the Univer-
sity of Naples Federico II (Naples, Italy). Degree in
Informatics and Ph.D. in Computational Science. Her
research activity has been mainly focused on develop-
ment and performance evaluation of parallel algorithms
and software for heterogeneous, hybrid, and multilevel
parallel architectures, from multicore to GPU-enhanced
machines and modern clusters and supercomputers.
After attending the Argonne Training Program on
ExtremeScale Computing (ATPESC) and visiting the Ar-
gonne National Laboratory (ANL, Chicago, Illinois, USA)
several times, she is now mainly working on the designing, implementation and
performance prediction/evaluation of software with/for the PETSc library.

Diego Romano was awarded a M.S. in Mathemat-
ics in 2000, and a Ph.D. degree in Computational
and Computer Sciences from the University of Naples
Federico II, Italy, in 2012. He obtained a permanent
position as a researcher at the Italian National Re-
search Council (CNR) in 2008, where he is currently
employed at the Institute for High-Performance Com-
puting and Networking (ICAR). His research interests
include the performance and design of GPU Computing
algorithms. Within this field, he works, for instance, on
the Global Illumination problem in Computer Graphics,

and mathematical models for performance analysis.

Lukasz Szustak received a D.Sc. Degree in Com-
puter Science in 2019 and a Ph.D. granted by the
Czestochowa University of Technology in 2012. His
main research interests include parallel computing and
mapping algorithms onto parallel architectures. His
current work is focused on the development of meth-
ods for performance portability, scheduling, and load
balancing, including the adaptation of stencil-based
computations to modern HPC architectures.


	Performance enhancement of a dynamic K-means algorithm through a parallel adaptive strategy on multicore CPUs
	Introduction and related works
	A new parallel adaptive K-means algorithm
	Implementation details
	Experimental results
	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


