
Received: 3 March 2020 Revised: 19 June 2020 Accepted: 14 August 2020

DOI: 10.1002/cpe.6008

S P E C I A L I S S U E P A P E R

About the granularity portability of block-based Krylov
methods in heterogeneous computing environments

Luisa Carracciuolo1 Valeria Mele2 Lukasz Szustak3

1Institute of Polymers, Composites and

Biomaterials (IPCB), Italian Research Council

(CNR), Naples, Italy

2Department of Mathematics and Applications,

University of Naples “Federico II”, Naples, Italy

3Department of Computer Science,

Czestochowa University of Technology,

Czestochowa, Poland

Correspondence

Luisa Carracciuolo, c/o Comprensorio “Adriano

Olivetti”, Via Campi Flegrei 34 80078, Pozzuoli

(NA), Italy.

Email: luisa.carracciuolo@cnr.it

Summary

Large-scale problems in engineering and science often require the solution of sparse

linear algebra problems and the Krylov subspace iteration methods (KM) have led to a

major change in how users deal with them. But, for these solvers to use extreme-scale

hardware efficiently a lot of work was spent to redesign both the KM algorithms and

their implementations to address challenges like extreme concurrency, complex mem-

ory hierarchies, costly data movement, and heterogeneous node architectures. All the

redesign approaches bases the KM algorithm on block-based strategies which lead to

the Block-KM (BKM) algorithm which has high granularity (i.e., the ratio of compu-

tation time to communication time). The work proposes novel parallel revisitation of

the modules used in BKM which are based on the overlapping of communication and

computation. Such revisitation is evaluated by a model of their granularity and veri-

fied on the basis of a case study related to a classical problem from numerical linear

algebra.

K E Y W O R D S

iterative method, parallel computing, performance models, performance portability

1 INTRODUCTION

Large-scale problems in engineering and science often require the solution of sparse linear algebra problems, such as systems of equations. The

Krylov subspace iteration methods (KM) have led to a major change in how users deal with large, sparse, nonsymmetric matrix problems. Krylov

methods can solve problems too large for other kinds of algorithms like factorizations, as well as problems where the coefficient matrix  is only

available as a function performing the matrix by vector multiplication operation. For all these reasons, the Krylov methods can be listed among the

top 10 algorithms for Computing in Science and Engineering.1 On these methods, computational scientists continue in investing also to make them

usable on future computing systems (i.e., see the PEEKS initiative2 of the Exascale Computing project3).

However, the performance of the Krylov methods is often dominated by communication, as communication has become much more expensive

compared with computation, in terms of both throughput and energy consumption. As in Yamazaki et al.,4 the term communication can be used to

include both horizontal data movement between parallel processing units, as well as vertical data movement between memory hierarchy levels. In

fact, in their original formulation, these methods are based on level 1 BLAS operations5 (i.e., vector products, products of a scalar by a vector, etc.).

Such operations have a low granularity and they fail to guarantee good performance especially in high-performance computing contexts. In parallel

computing, the term granularity of a task is a measure of the amount of work (or computation) which is performed by that task.6 Such a measure

intends to take into account the ratio of computation time to communication time.

For these solvers to use extreme-scale hardware efficiently, during the last three decades, a lot of work was spent to redesign both the KM

algorithms and their implementations (e.g., see Yamazaki et al.,4 Bai et al.,7 Hoemmen,8 Ghysels et al.,9 Mohiyuddin et al.,10 and Imberti et al.11) to

try to address challenges like extreme concurrency, complex memory hierarchies, costly data movement, and heterogeneous node architectures.

Concurrency Computat Pract Exper. 2021;33:e6008. wileyonlinelibrary.com/journal/cpe © 2020 John Wiley & Sons, Ltd. 1 of 21
https://doi.org/10.1002/cpe.6008

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-8521-1645
https://orcid.org/0000-0002-2643-3483
https://orcid.org/0000-0001-7429-6981
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6008&domain=pdf&date_stamp=2020-10-02

2 of 21 CARRACCIUOLO ET AL.

All the redesign approaches base the algorithms on BLAS 2 and 3 operations (products of a vector by a matrix, matrices products, etc.) which have

a higher granularity.

The BLAS-based algorithm formulation allows not only the reuse of procedures from optimized software libraries for different kinds of comput-

ing architectures (e.g., see the MAGMA software library12 for GPU based computing systems, or the ScaLAPACK software library13 for distributed

memory systems) but also the portability of algorithm implementation. In the last years, the portability term has enriched itself with new meanings:

computational and computing scientists are questioning and confronting each other about how to measure the degree to which an application (or

library, programming model, algorithm implementation, etc.) has become performance portable. The terms performance portability has been informally

used in computing communities to substantially refer to (1) the ability to run one application across multiple hardware platforms and (2) achieving

some notional level of performance on these platforms.14 Among the efforts related to the performance portability issue should be certainly cited in

the annual performance portability workshops organized by the US Department of Energy.15 We strongly believe that this will be one of the hottest

points in future, for many interesting application fields, like Machine Learning of course, but also the High-Performance Computing, Cloud Comput-

ing and the Internet of Things, where architectures are complex, highly heterogeneous and overall continuing evolving (as you can read in Laccetti

et al.16), or the Parallelims-in-Time that today can benefit from the new high-performance architectures and libraries, as the authors discussed in

Carracciuolo et al.17 and Mele et al.18,19

This work intends to deal with the issue related to the evaluation of performance portability of KM block-based algorithms on the computing

systems which will respond to the new requirements of the incoming exascale era (e.g., see The Exascale Computing Project (ECP)3 or the European

Horizon 2020 FET Proactive—High-Performance Computing Call20). Most likely, these systems will respond to the following description: multinode

systems where each node will have a high level of internal parallelism which will be also made available by technologies such as NVIDIA GPU and

Intel Xeon Phi. In particular, as in Carracciuolo and Lapegna21 this work intends to analyze the portability of some performance metrics of a parallel

implementation of a KM block-based algorithm on heterogeneous CPU–GPU systems equipped with standard scientific libraries as MAGMA.12 The

considered implementation proposes novel revisitation of well-known algorithms, such as those used to compute the QR factorization, which is

based on the overlapping of communication and computation.

The work is organized as follows: in Section 2 the block-based version of KM method (BKM) is presented; in Section 3 some new parallel imple-

mentation of BKM are described and in Section 4 a model able to describe the implementation performance in terms of its granularity is given;

in Section 5 the model is verified on the basis of a case study related to a classical problem from numerical linear algebra; in Section 6 results are

summarized and some future work is described.

2 THE KM BLOCK-BASED ALGORITHMS

Let  be an n× n real matrix and, let us recall from Saad 22 that KM builds, by an iterative approach, an approximation xm of the solution of the linear

system

x = b, (1)

that is extracted from a subspace x0 +m of R
n under the condition that b −xm⊥m where:

1. x0 represents an arbitrary initial guess to the solution,

2. m = m(, r0) = span{r0,r0, … ,m−2r0,
m−1r0} represents the subspace of R

n spanned by a suitable set of monomials Mj=0,… ,m−1()of the

matrix  and

3. r0 = b −x0 represents the initial residual.

If m = m, the iterative algorithm that computes the new approximation xm+1 at the step m+1 from the previous one m≥0 was

known as Generalized Minimum Residual Method (GMRES)22 and it performs the actions listed in Algorithm 1 where 𝛽 = ||r0||2, v0 = q0 = r0∕𝛽 , e1 =
[1,0,0, … 0,0]T , Q0 = [q0], columns of Qm are mutually orthonormal and Hm+1 is a Hessenberg matrix.

A block-based version of Algorithm 1 is available and, during the last decades, it was referenced using different names: from s-step GMRES23 to

a more recent Communication Avoiding-CA GMRES.8

The block-based version of Algorithm 1 is listed in Algorithm 2 where:

vm+j =
j∏

i=0

Mi()vm, j = 1, … , s (2)

𝔔0 = [v0, … , vs−1, vs], (3)

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 3 of 21

Algorithm 1. The mth step of GMRES method

1: OrthoBegin ⊳ Build an orthonormal basis of column vectors Qm+1 =
[
Qm, qm

]
of m+1

2: Compute vm+1 = Mm()vm

3: Orthonomalize vm+1 againstQm to compute qm andHm+1 such that Qm = Qm+1Hm+1

4: OrthoEnd

5: SolBegin ⊳ Extract a suitable vector from a subspace x0 +m+1

6: compute ym+1 = argminy
‖‖‖𝛽e1 − Hm+1y‖‖‖2

7: compute xm+1 = x0 + Qm+1ym+1

8: SolEnd

9: PrepBegin ⊳ Prepare for the next step

10: Assign vm+1 ← qm

11: PrepEnd

𝔔m+1 = [q0, … , qms−1, qms, qms+1], (4)

𝔔m+1 = [q0, … , qms−1, qms], (5)

Vm+1 ∈ R
n×s, (6)

𝔔m+1 ∈ R
n×(ms+1), (7)

Qm+1 ∈ R
n×s, (8)

Rm+1 ∈ R
s×s, (9)

ℌm+1 ∈ R
(ms+1)×ms. (10)

This version of GMRES is essentially based on a block version of operations described in lines 2 and 3 of Algorithm 1. In the new version (see

line 2 of Algorithm 2) multiple column vectors Vm+1 = [vm+1, … , vm+s] are calculated at the same step m and the new orthonormal basis is computed

by two normalizations steps:

1. orthonormalize Vm+1 against the orthonormal basis 𝔔m and computes Vm+1,

2. orthonormalize columns of Vm+1 by a QR factorization.24

More details on Algorithm 2 can be found in Hoemmen.8

Algorithm 2. The mth step of block-based GMRES method

1: OrthoBegin ⊳ Build an orthonormal basis of column vectors 𝔔m+1 =
[
𝔔m,Qm+1

]
of m+s

2: Compute Vm+1 =
[
vm+1,… , vm+s−1, vm+s

]
3: Compute ℜm+1 = 𝔔T

mVm+1

4: Compute V̄m+1 = Vm+1 −𝔔mℜm+1

5: Compute the QR factorization of V̄m+1 = Qm+1Rm+1

6: Compute the Hessenberg matrix ℌ
m+1

(from Rm+1 and ℜm+1) such that𝔔̄m+1 = 𝔔m+1ℌm+1

7: OrthoEnd

8: SolBegin ⊳ Extract a suitable vector from a subspace x0 +m+s

9: compute ym+1 = argminy
‖‖‖𝛽e1 −ℌ

m+1
y‖‖‖2

10: compute xm+1 = x0 +𝔔m+1ym+1

11: SolEnd

12: PrepBegin ⊳ Prepare for the next step

13: Assign vm+1 ← qms+1

14: PrepEnd

In the exact arithmetic, s steps of the Algorithm 1 are equivalent to one step of the Algorithm 2 but the Algorithm 2 suffers from some insta-

bilities when finite precision is used. A lot of work was spent during the last years to identify the origin of these phenomena and to mitigate their

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 21 CARRACCIUOLO ET AL.

consequences (e.g., see Bai et al.7 about the role of monomials Mj()on the “condition number” of Vm+1 and then on the convergence of Algorithm 2.

Also to temper instability effects, s is chosen to be s≪ n and the execution of Algorithm 2 is restarted22 just after some steps m≪ n. By under these

last assumptions and from (2) to (10) follows that the operations of Algorithm 2 with higher computational costs are those listed at lines 2–5 and 10.

In the next Section 3 some strategies for the distribution, on different P tasks, of the computational load of the above listed operations are

analyzed and a parallel version of Algorithm 2 is described.

3 THE PARALLEL VERSION OF BLOCK-BASED KM METHOD

In this section, we describe some parallelization strategies for operations with higher computational costs in Algorithm 2 and finally propose the

parallel version of the block-based KM method.

3.1 Vm+1 orthonormalization against 𝔔m

The operations at lines 3 and 4 of the Algorithm 2 can be rewritten respectively as:

ℜm+1 = 𝔔T
mVm+1 =

(
𝔔1

m
T

𝔔2
m

T … 𝔔P−1
m

T 𝔔P
m

T
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1
m+1

V2
m+1

⋮

VP−1
m+1

VP
m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

P∑
p=1

𝔔p
m

T Vp
m+1

(11)

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V
1

m+1

V
2

m+1

⋮

V
P−1

m+1

V
P

m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Vm+1 = Vm+1 −𝔔mℜm+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1
m+1

V2
m+1

⋮

VP−1
m+1

VP
m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝔔1
m

𝔔2
m

⋮

𝔔P−1
m

𝔔P
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ℜm+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1
m+1

V2
m+1

⋮

VP−1
m+1

VP
m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝔔1
mℜm+1

𝔔2
mℜm+1

⋮

𝔔P−1
m ℜm+1

𝔔P
mℜm+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1
m+1

V2
m+1

⋮

VP−1
m+1

VP
m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝔔1
mℜ1

m+1

𝔔2
mℜ2

m+1

⋮

𝔔P−1
m ℜP−1

m+1

𝔔P
mℜP

m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 ≠
∑
𝔔1

mℜ1
m+1

p2 ≠
∑
𝔔2

mℜ2
m+1

⋮

pP1 −
∑
𝔔P−1

m ℜP−1
m+1

pP ≠
∑
𝔔P

mℜP
m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12)

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 5 of 21

where ℜp
m+1

stands for 𝔔p
m

T Vp
m+1

for all p=1, … , P.

Using (11) and (12), a distribution on P tasks of the computational load of related operations can be performed, on each p of P tasks, using the

following Algorithm 3 where computational phases are overlapped with communication ones.

Algorithm 3. A parallel algorithm for the first step of the orthonormalization phase during the mth step of block-based KM

1: Compute ℜp
m+1

= 𝔔p
m

T Vp
m+1

⊳ p is the identification number of the executing task among the P total tasks

2: Assign ℜm+1 ← ℜp
m+1

3: Execute a Non-Blocking Allgather of ℜp
m+1

4: Compute V̄p
m+1

= Vp
m+1

−𝔔p
mℜ

p
m+1

5: for all j ≠ p do

6: if (ℜj
m+1

is available then)

7: Compute V̄p
m+1

= V̄p
m+1

−𝔔p
mℜ

j
m+1

8: Compute ℜm+1 = ℜm+1 +ℜj
m+1

9: end if

10: end for

3.2 Computation of QR factorization of Vm+1

In this section, we show how Tall Skinny QR (TSQR), a communication-avoiding QR factorization for dense matrices with many more rows than

columns,8 can be used to parallelize the operation at line 5 of the Algorithm 2. TSQR, using a block approach on a binary tree, can compute the QR

factorization of the n× s matrix A, with n≫ s in l = log2P stages when P is the number of subblocks (Ai)i = 1, … ,P of A and where each subblock is

a ni × s matrix (we can assume that ni ≈ n/P).

In Figure 1 is represented an example of a TSQR execution when P=8 where the gray boxes indicate where local QR factorizations take place.

The Q and R factors each have both apex and subscript (the apex is the stage number j=0, … , l, the subscript is the sequence number i=1, … , 2l− j

for that stage) and:

1. Q0
i

R0
i

is the QR factorization of the ith block Ai of A, ∀i=1, … , P;

2. Qj
i
Rj

i
is the QR factorization of the ith block

(
Rj−1

2∗(i−1)+1

Rj−1
2∗(i−1)+2

)
, ∀i=1, … , 2l− j,∀ j=1, … , l;

3. Q0
i

is a ni × s matrix, ∀i=1, … , P;

4. Qj
i

is a 2s× s matrix, ∀i=1, … , 2l− j,∀ j=1, … , l;

5. Rj
i

is a s× s matrix, ∀i=1, … , 2l− j,∀ j=0, … , l.

F I G U R E 1 Representation of TSQR execution on P=8

tasks

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 21 CARRACCIUOLO ET AL.

Then it follows that:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

⋮

AP−1

AP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
l∏

j=0

diag
(

Qj

i=1,… ,2l−j

))
Rl

1, (13)

where diag
(

Qj

i=1,… ,2l−j

)
is the block diagonal matrix

diag(Qj

i=1,… ,2l−j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qj
1

0 … 0 0

0 Qj
2

… 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … Qj

2l−j−1
0

0 0 … 0 Qj

2l−j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whose dimensions are: n×Ps, if j=0, and 2l− j+1s×2l− js, if j=1, … , l.

For all of the above, in order to define an algorithm to compute the QR factorization of

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

⋮

AP−1

AP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

from (13) we obtain that:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1

Q2

⋮

QP−1

QP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Q = Q0Ql =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0
1

Ql

Q0
2

Ql

⋮

Q0
P−1

Ql

Q0
P

Ql

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R = Rl

1,

where

Ql =
l∏

j=1

diag
(

Qj

i=1,… ,2l−j

)

is a Ps× s matrix and where Q0 = diag
(

Q0
i=1,… ,P

)
is a n×Ps matrix.

We then observe that the main computational cost of TSQR algorithm is related to the definition of matrix Q0 since matrix Ql has very small

dimensions compared with those of Q0. A parallel algorithm, that is going to be executed on each p of P tasks and that takes into account this last

observation, is the one listed in Algorithm 4.

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 7 of 21

Algorithm 4. A parallel algorithm for TSQR computation of A

1: Compute QR factorization Q0
p R0

p of Ap ⊳ p is the identification number of the executing task among the P total tasks

2: if (p = 1) then

3: Gather R0
j
,∀j

4: Compute Ql matrix

5: Broadcast Ql matrix to all P tasks

6: end if

7: Compute Qp = Q0
p Ql

3.3 Computation of the columns of Vm+1

In this section, we show a parallel algorithm that computes the matrix-vector products

(s)q = sb, s = 1, … , S (14)

on which the computation of the S columns of Vm+1 is based.

Such algorithm (see Algorithm 5) computes in each step s of a cycle the two successive vectors (s)q and (s+1)q by a flow of operations that overlap

computation and communication phases. The matrix  and vectors b and (s)q, s = 1, … , S are distributed, in a block-row fashion, among P tasks,

that is, if

 =

⎛⎜⎜⎜⎜⎝
1,1 … 1,P

⋮ ⋱ ⋮

P,1 … P,P

⎞⎟⎟⎟⎟⎠
, (15)

b =

⎛⎜⎜⎜⎜⎝
b1

⋮

bP

⎞⎟⎟⎟⎟⎠
, (16)

(s)q =

⎛⎜⎜⎜⎜⎝
(s)q1

⋮

(s)qP

⎞⎟⎟⎟⎟⎠
, (17)

then the subblocks {p,j}j=1,…P, bp and (s)qp, s = 1, … , S are assigned to the pth task.

To efficiently compute (14), in a parallel context when is a very sparse matrix, the issue of a good distribution of the matrix elements among the

parallel tasks have to be considered. Such distribution should be able to guarantee both a high computational load per task and a low communication

overhead. A way to reach the goal of getting the right matrix elements distribution is based on techniques using hypergraph partition models. Let

us consider the column-net hypergraph model25  = (,) of the matrix : a vertex vi∈  and a net nj∈  exist for each row ri and column cj

, respectively. A net nj⊆  contains the vertices corresponding to the rows that have a nonzero entry in column cj. A weight wi is assigned to the

vertex vi∈  and it is set to the total number of nonzeros in row ri. Given the hypergraph = (,),Π = {V1
R
, … ,VK

R
} is called a K-way partition

of the vertex set  if

Vk
R ≠ ∅, k = 1, … ,K, (18)

Vk
R ∩ Vl

R = ∅, k, l = 1, … ,K, k ≠ j, (19)

∪kVk
R = . (20)

A K-way partition vertex Π of  is said to satisfy the partitioning constraint if

Wk ≤ Wavg(1 + 𝜀), k = 1, … ,K, (21)

where Wk =
∑

vi∈Vk
R

wi, Wavg =
∑

k Wk

K
and 𝜀 is the allowable imbalance ratio.

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 21 CARRACCIUOLO ET AL.

Algorithm 5. A parallel algorithm for the computation of the S matrix-vector products (s)q = sb, s = 1, … , S

1: Assign s ← 1 ⊳ p is the identification number of the executing task among the P total tasks

2: while s ≤ S do

3: Assign ynloc
p ← 0

4: Assign xp ←s b

5: Execute a Non-Blocking Allgather of xp

6: Compute yloc
p = p,pxp

7: if (s + 1 ≤ S then)

8: Compute zp = p,pyloc
p

9: end if

10: for all j ≠ p do

11: if (xj is available then)

12: Compute ynloc
p = ynloc

p +p,jxj

13: end if

14: end for

15: Compute yp = yloc
p + ynloc

p

16: Assign (s)qp ← yp

17: if (s + 1 ≤ S then)

18: Execute a Non-Blocking Allgather of yp

19: Compute zp = zp +p,pynloc
p

20: for all j ≠ p do

21: if (yj is available then)

22: Compute zp = zp +p,jyj

23: end if

24: end for

25: Assign (s+1)qp ← zp

26: end if

27: s ← s + 2

28: end while

Let us denote by  the set of external nets of a partition Π where a net nj is said to be external if it connects more than one part of Π (i.e., one

of its vertexes is a member of more than one part Vk
R

).

This model could be used to find a “good” row block distribution of matrix  by the solution of the following constrained optimization problem:

Problem 1. Compute the partitioning objective Πopt as

Πopt = argminΠEdgeCutSize(Π), (22)

where EdgeCutSize(Π) is the following function defined over the set of all the K-way partition vertex Π of  satisfying the partitioning constraint

EdgeCutSize(Π) = nj ∈
∑

(lj − 1) (23)

and where lj is the connectivity of net nj (i.e., the number of parts connected by nj).

To any partioning action could be associated with a matrix row and column reordering, for example, let us suppose that Ip = {pi1, … ,pinp
} is the

set of row indices of matrix K𝜆 assigned to the pth partition then the permutation 𝜋 represented in two-line form by

𝜋 =
⎛⎜⎜⎝

1 … n1 …
∑P−1

i=1 ni … n

1i1 … 1in1
… Pi1 … PinP

⎞⎟⎟⎠
define the permutation matrix P𝜋 ,24 where np = |Ip|. With the terms “partition-based reordered matrix” 𝜋 we meant the matrix whose rows

and columns are permuted by the P𝜋 permutation matrix, that is, 𝜋 = P𝜋P𝜋 . The block distribution of consecutive rows of the partition-based

reordered matrix 𝜋 satisfies the properties to be well balanced (see the partitioning constraint 21) and with a low communication overhead (see the

partitioning objective 22).

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 9 of 21

3.4 The whole parallel method

Suppose that xm, and then columns of Vm, Vm, and𝔔m, are distributed in a block-row fashion on different P tasks p=1, … , P and that, for each m, xp
m,

Vp
m, V

p

m, and 𝔔p
m denote the pth block of xm, Vm, Vm, and 𝔔m, respectively. The above-mentioned data are all related to the operations with the higher

computational cost which is the sole requiring a computational load distribution. Also, suppose that to an additional task p=0 are delegated all the

operations less computationally expensive. Then the final parallel version of the Algorithm 2 could be as listed in Algorithm 6 executable on each

p=0, … , P of P+1 tasks. We also note that the instructions listed at lines 31–39, as described in Reference 8, could be executed only if iterative

block method converged.

Algorithm 6. The parallel mth step of block-based GMRES method

1: OrthoBegin

2: if (p > 0) then

3: Compute Vp
m+1

=
[
vp

m+1
,… , vp

m+s−1
, vp

m+s

]
by the Algorithm 5

4: end if

5: if (p > 0) then

6: Compute ℜp
m+1

= 𝔔p
m

T Vp
m+1

andAssign ℜm+1 ← ℜp
m+1

7: Execute a Non-Blocking Allgather of ℜp
m+1

8: Compute V̄p
m+1

= Vp
m+1

−𝔔p
mℜ

p
m+1

9: for all j ≠ p do

10: if (ℜj
m+1

is available then)

11: Compute V̄p
m+1

= V̄p
m+1

−𝔔p
mℜ

j
m+1

12: Compute ℜm+1 = ℜm+1 +ℜj
m+1

13: end if

14: end for

15: else

16: Get ℜm+1 from task p = 1

17: end if

18: if (p > 0) then

19: Compute QR factorization Q0
p R0

p of V̄p
m+1

20: else

21: Gather R0
j
,∀j

22: Compute Ql matrix and Broadcast to all tasks p = 1,… ,P

23: Rm+1 ← Rl
1

24: end if

25: if (p > 0) then

26: Compute Qp = Q0
p Ql

27: else

28: Compute the Hessenberg matrix ℌ
m+1

from Rm+1 and ℜm+1

29: end if

30: OrthoEnd

31: SolBegin

32: if (p = 0) then

33: compute ym+1 = argminy
‖‖‖𝛽e1 −ℌ

m+1
y‖‖‖2

34: Broadcast ym+1 to all tasks p = 1,… ,P

35: end if

36: if (p > 0) then

37: compute xp
m+1

= xp
0
+𝔔p

m+1
ym+1

38: end if

39: SolEnd

40: PrepBegin

41: if (p > 0) then

42: Assign vp
m+1

← qp
ms+1

43: end if

44: PrepEnd

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 21 CARRACCIUOLO ET AL.

4 MODELS FOR PERFORMANCE ANALYSIS OF A PARALLEL BLOCK-BASED KM METHOD

This work intends to deal with the issue related to the evaluation of the performance portability of KM block-based algorithms. To do this, we want

to measure the performance of the proposed algorithm in terms of its granularity (Sys)G(m, s, n, 𝜑), defined as

(Sys)G(m, s, n, 𝜑) =
(Sys)Tcomp(m, s, n, 𝜑)
(Sys)Tcomm(m, s, n, 𝜑)

, (24)

where (Sys)Tcomp(m, s, n, 𝜑) and (Sys)Tcomm(m, s, n, 𝜑) represent the time spent in computation and communication, respectively.

We already noticed in the first section that the performance of the Krylov methods is often dominated by communication, in terms of both

throughput and energy consumption. When these methods are based on level 1 BLAS operations,5 which have a low granularity, they fail to guarantee

good performance especially in high-performance computing contexts. Thus all the new redesign approaches base the algorithms on BLAS 2 and 3

operations (products of a vector by a matrix, matrices products, etc.) which have a higher granularity.

If we consider just the part of the algorithm that omits the instructions performed only on condition (i.e., lines range 31-39), (Sys)Tcomp and (Sys)Tcomm

respectively should be:

(Sys)Tcomp(m, s, n, 𝜑) ≈ (Sys)𝜏
p>0
comp

[
P
(

ms2 n
P
+ s n

P

)
+ ms2 n

P
+ (P − 1)ms2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ortho.ph.: step 1

+ (Sys)𝜏
p>0
comp

[
(P + 2)s2 n

P

]
+ 𝜏

p=0
comp[O(Ps3) + O(m3s3)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ortho.ph.: step 2

+ (Sys)𝜏
p>0
comp

[
s𝜑n n

P
+ s (P − 1) n

P

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Vm+1 col.comp

, (25)

(Sys)Tcomm (m, s, n, 𝜑) ≈ (Sys)𝜏
p>0,q>0
comm

[
2m (P − 1) s2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ortho.ph.: step 1

+ (Sys)𝜏
p=0,q>0
comm

[
(P + 1)Ps2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ortho.ph.: step 2

+ (Sys)𝜏
p>0,q>0
comm

[
2 (P − 1) s n

P

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Vm+1 col.comp

(26)

Variable 𝜑 represents the sparsity of matrix  and is defined as 𝜑 = nnz()
n2

where nnz() is the number of nonzero elements of . The symbols
(Sys)𝜏

p=0
comp and (Sys)𝜏

p>0
comp respectively represent the time in seconds to perform a floating-point operation on tasks p=0 and p>0. The symbols (Sys)𝜏

p=0,q>0
comm

and (Sys)𝜏
p>0,q>0
comm respectively represent (1) the time in seconds to transfer a floating-point number among tasks p and q where p=0 and q>0 and (2)

the time in seconds to transfer a floating-point number among tasks p and q where p>0 and q>0. Such notations assume that

(Sys)𝜏
p1>0
comp = (Sys)𝜏

p2>0
comp , ∀p1, p2 = 1, … ,P,

(Sys)𝜏
p=0,q1>0
comm = (Sys)𝜏

p=0,q2>0
comm , ∀q1, q2 = 1, … ,P,

(Sys)𝜏
p1>0,q1>0
comm = (Sys)𝜏

p2>0,q2>0
comm , ∀p1, p2, q1, q2 = 1, … ,P.

To write Equations (25) and (26) we consider that in Algorithm 6:

1. the matrix–matrix products at line 6 require ms2 1

n
floating-point operations,

2. the communication phase at line 7 executes 2(P − 1) send/receive operations, during each operation ms2 floating-point numbers are

transferred,

3. the matrix–matrix products, combined with an AXPY operations1, at line 8 require ms2 1

n
+ s 1

n
floating-point operations,

4. the matrix–matrix products, combined with an AXPY operations, at line 11 require ms2 1

n
+ s 1

n
floating operations and are executed P−1 times,

5. the AXPY operations at line 12 requires ms2 floating-point operations and are executed P−1 times,

6. the computation of QR factorization at line 19 requires 2s2 1

n
floating-point operations,24

7. the communication phase at line 21 executes P receive operations, during each operation s2 floating-point numbers are transferred,

8. the computation of Ql matrix at line 22 requires O(Ps3) floating-point operations that are executed only on task p=0,

9. the communication phase at line 22 executes P send operations, during each operation Ps2 floating-point numbers are transferred,

10. the matrix–matrix products at line 26 requires Ps2 1

n
floating-point operations,

11. the computation of ℌ
m+1

matrix at line 28 requires O(m3s3) floating-point operations that are executed only on task p=0.

We also consider that to compute the column of Vp
m+1

at line 3 of the Algorithm 6 each task p=1, … , P has:

1 The term AXPY indicates a generalized vector addition of the form y = y + 𝛼x.

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 11 of 21

1. to compute s matrix–vector operations of the form (p,j)j=1,… ,P(xj)j=1,… ,P for a total of about s nnz()
P

floating-point operations.

2. to compute (P − 1)s AXPY operations for a total of about (P − 1)s n
P

floating-point operations.

3. to execute 2(P − 1)s send/receive operations, during each operation at most n
P

floating-point numbers are transferred.

To carry out a study of the behavior of granularity (Sys)G(m, s, n, 𝜑) as the size of the problem n increases and P=1, as often happens with het-

erogeneous computing system mounting just one accelerator device to which are delegated the most computationally intensive phases, taking into

account that s, m≪ n, some of the terms of Equation (25) can be overlooked. Furthermore, we can assume that (Sys)𝜏
p>0,q>0
comm = 0, both Equations (25)

and (26) could be rewritten as

(Sys)Tcomp(m, s, n, 𝜑) ≈ (Sys)𝜏
p>0
comp

n
P

{
s𝜑n + [(P + 1)m + P + 2]s2 + (2P − 1)s + P(P − 1)ms2

n

}
, (27)

(Sys)Tcomm(m, s, n, 𝜑) ≈ (Sys)𝜏
p=0,q>0
comm {(P + 1)Ps2}. (28)

Then, taking into account the asymptotic behavior as the size of the problem n increases, Equation(24) for the considered algorithm (when P=1)

could be written as:

(Sys)G(m, s, n, 𝜑) ≈
limn→∞

(Sys)𝜏
p>0
comp

(Sys)𝜏
p=0,q>0
comm

n
s𝜑n + (m + 3)s2 + s

2s2
≈

limn→∞

(Sys)𝜏
p>0
comp

(Sys)𝜏
p=0,q>0
comm

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Computing
environment

𝜑n2

2s
⏟⏟⏟

matrix sparsity
and dimension

= (Sys)𝜁𝜅(m, s, n, 𝜑), (29)

where we pose

(Sys)𝜁 =
(Sys)𝜏

p>0
comp

(Sys)𝜏
p=0,q>0
comm

, (30)

𝜅(m, s, n, 𝜑) = 𝜑n2

2s
. (31)

From Equation (29) it is evident that (Sys)G(m, s, n, 𝜑) depends on the characteristics of the computing environment, on the sparsity of , on the

problem size n and on the value of s. Note that in the model considered for (Sys)G(m, s, n, 𝜑) the overlap of computation and communication phases is

not considered.

In order to “asses portability” of the proposed algorithm, the performance portability metric(m, s, n, 𝜑,H)which is defined in Pennycook et al.,14

can be used:

(m, s, n, 𝜑,H) = |H|
iH ∈

∑ 1

ei(m,s,n,𝜑)

, (32)

where ei(m, s, n, 𝜑) is defined as:

ei(m, s, n, 𝜑) =
(Sys)i G(m, s, n, 𝜑)

1 + (Sys)i G(m, s, n, 𝜑)
. (33)

It is easy to verify that:

• ei(m, s, n, 𝜑) coincides with the fraction of the calculation time compared with the total time of execution of the considered algorithm implemen-

tations on the ith system;

• the bigger G, the more ei(m, s, n, 𝜑) is close to one;

• for all j≠ i

ei(m, s, n, 𝜑) < ej(m, s, n, 𝜑) ⇔ (Sys)i𝜁 < (Sys)j𝜁 ; (34)

• for all 𝜒 ∈]0, … ,1[

ei(m, s, n, 𝜑) > 𝜒 ⇔ 𝜅(m, s, n, 𝜑) > 1
(Sys)i𝜁

(
1 − 1

𝜒 + 1

)
. (35)

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 21 CARRACCIUOLO ET AL.

The proposed performance portability metric is based on the harmonic mean of an application’s performance efficiency observed across a set H

of platforms. As discussed in Smith,26 harmonic mean, unlike what is allowed by other types of mean such as arithmetic or geometric one, should be

used for summarizing performance expressed as a rate.

5 A CASE STUDY IN NUMERICAL LINEAR ALGEBRA

We show and discuss some performance tests related to the solution of (1) by Algorithm 6 where is a structured banded matrix. We remember that

the considered Algorithm is based on both BLAS2 and BLAS3 operations where the involved operands are both full and sparse (e.g., see respectively

the QR factorization at line 19 and the matrix-power computations at line 3 of the Algorithm 6). Therefore, depending on the type of operand (a full

or sparse matrix), the most suitable BLAS procedure is used.

In Computational Science, there are many examples of applications that lead to the use of band matrices: matrices from finite element or finite

difference problems are often banded; other applications are based on matrices which can be successfully well approximated/reformulated by

banded matrices (e.g., see Zhang et al.27 and Genton28 for some case studies in Machine Learning context). For these reasons banded matrices can

be considered significative case studies.

To generate test banded matrices we use the xLATMR procedure from the LAPACK Test Suite29 which can generate random dense/sparse by

requesting, among others, the following actions: (1) generate a matrixwith random entries of a specified distribution, (2) make a banded matrix,

if desired, by zeroing out the matrix outside a band of bandwidth 2 * k. In particular, by using the xLATMR procedure and for different values of matrix

dimension n and different values of its sparsity 𝜑, we generate the matrix (n, 𝜑) where k ≈ 𝜑n−1

2
. The considered values for 𝜑 should allow us to

investigate a range of case studies whose matrices sweep from very scattered to almost dense matrices.

Tests are executed on three different systems whose hardware features are:

System 1 a Dell Inc. PowerEdge R720 server with:

• 2 Intel(R) 10-core Xeon(R) CPUs,

• 1 NVIDIA Tesla K20m.

The accelerator device is accessible by a PCI Express connection whose average Measured Bandwidth (Sys)1𝛾CPU−GPU is about 6.3 GB/s. Its

Double Precision Performance (Sys)1𝜏GPU is 572 GFlops. Therefore, (Sys)1𝜁 = 1.1014e − 02.

System 2 a Dell Inc. PowerEdge R510 server with:

• 2 Intel(R) quad-core Xeon(R) CPUs,

• 1 NVIDIA TITAN Xp.

The accelerator device is accessible by a PCI Express bus connection whose average Measured Bandwidth (Sys)2𝛾CPU−GPU is about 3.2

GB/s. Its Double Precision Performance (Sys)2𝜏GPU is 395 GFlops. Therefore, (Sys)2𝜁 = 8.1013e − 03.

System 3 a Dell Inc. PowerEdge R7425 server with:

• 2 AMD(R) EPYC 7301 16-Core CPUs,

• 1 NVIDIA Tesla V100-PCIE-32GB.

The accelerator device is accessible by a PCI Express bus connection whose average Measured Bandwidth (Sys)3𝛾CPU−GPU is about 12.9

GB/s. Its Double Precision Performance (Sys)3𝜏GPU is 5499 GFlops. Therefore, (Sys)3𝜁 = 2.3459e − 03.

In Table 1 we report some details about how the considered Hosts and Devices are connected: in particular the PCI Express (PCIe) generations

of both the Host Bus and the Device Connector are listed. In the same table the Peak Bandwidths, as expected by the standards of the various PCIe

generations,30 are reported. We also report the number of lanes on which each PCI connection is based. The Measured Bandwidths (Sys)(⋅)𝛾CPU−GPU

seem to be consistent with the Peak Bandwidths reported in Table 1 also if some connection combinations seem to have a particularly negative

influence on data transfer performances (i.e., see System 2).

All these systems, although homogeneous in the architecture that combines multicore CPUs with just one GPU, are quite different for both

computation and communication performances. The tasks p=0, … , 1, used to execute the Algorithm 6, are mapped to CPUs (where p=0) and

GPUs (where p=1).

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 13 of 21

TA B L E 1 Details of
Host-Device PCIe connections
in systems used for tests
executions

Generation

of host bus

of lanes of

host bus

Peak bandwidth

of host bus (GB/s)

Generation

of device

of lanes of

device

Peak bandwidth

of device (GB/s)

System 1 3.0 16 15.75 2.0 16 8.0

System 2 2.0 8 4.0 3.0 16 15.75

System 3 3.0 16 15.75 3.0 16 15.75

On all the systems are available the following software tools:

System 1 release 6.7 of a Scientific Linux distribution,

• System 2 release 16.04.4 of a Ubuntu Linux distribution,

System 3 release 7.7.1908 of a CentOS Linux distribution,

• version 10.2 of the Nvidia CUDA Toolkit package,

• version 11.1.3 of the Intel MKL library,

• version 2.5.1 of the MAGMA package.

The value of (Sys)i𝜏GPU is evaluated by some executions of the MAGMA dGEMM procedure. In the same manner, the value of (Sys)i𝛾CPU−GPU is

evaluated by some executions of the bandwidthTest from CUDA Toolkit when the pinned memory is used. A schematic representation of the

environment, as shown by the MAGMA magma_print_environment() function, is listed in Figure 2.

We note that the considered Algorithm is based on both BLAS2 and BLAS3 operations where the involved operands are both full and sparse

(e.g., see respectively the QR factorization at line 19 and the matrix-power computations at line 3 of the Algorithm 6). Therefore, depending on the

type of operand (a full or sparse matrix), the most suitable MAGMA procedure is used.

In Figures 3-6 are showed some results related to the execution times (both total and related to each phase of computation for all the three

considered systems) of the Algorithm 6 as functions of problem dimension n for different values s. For all the considered values of n, different values

for the sparsity of matrix are considered. Tests have been scheduled on the considered systems taking into account the availability of RAM on the

GPU devices (see Table 2 for details). Tests with higher memory requirements (i.e., with higher values for𝜑) are scheduled just on the second and the

third systems.

From the analysis of the times shown in the aforecited figures, it is evident that the total execution time (see plots (*).1) is dominated by the

time for the calculation of the matrix powers (see the yellow boxes in plots (*).2). This seems consistent with the ideal model for G (as defined in

Equation (29)).

In Figure 7 the trends of ei(m, s, n, 𝜑) performance metrics, as functions of problem dimension n, for different values s, different values for spar-

sity𝜑 computed on all the considered systems, are plotted: lines with the same color is related to the same value of s; lines related to each system are

identified by the same symbol: the symbols ●, ▴, and ⧫ tag respectively the systems 1, 2, and 3. In Figure 8 the trends of (m, s, n, 𝜑,H) performance

portability metric, as functions of problem dimension n, for different values s and different values for sparsity 𝜑, are plotted: as above described

lines with the same color is related to the same value of s. (m, s, n, 𝜑,H) metrics, depending on the values of 𝜑, are computed on the two different

Systems Sets H‡ and H†.

F I G U R E 2 Description of the computing environments used by performance tests

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 21 CARRACCIUOLO ET AL.

F I G U R E 3 Total Execution time (*).1 and Execution times for each phase (*).2 of the Algorithm 6 as functions of problem dimension n for
different values s. The value of matrix sparsity is 𝜑=0.40

From the Figure 7 we can observe that:

• given the computational complexity𝜅(m, s, n, 𝜑)of the problem, the measured value for ei(m, s, n, 𝜑) is as small as smaller is (Sys)i𝜁 consistently with

inequality (34), for example, see the violet lines (s=1) related to 𝜑=0.20;

• given the computing system (i.e., (Sys)i𝜁), to get a “good” value for ei(m, s, n, 𝜑) (say at least 𝜒) it is necessary that 𝜅(m, s, n, 𝜑) is as much larger as

smaller is (Sys)i𝜁 : e.g., if s=1,𝜑=0.20 and𝜒 = 0.5, on System 1 all the considered values for n are suitable while on System 3 should be n≥35, 000.

All that is consistent with the asymptotic behavior described by inequality (35).

All the plots in Figure 8 confirm that, since (m, s, n, 𝜑,H) is a suitable mean “dominated by the minimum”2of ei(m, s, n, 𝜑) values,31 for this to

take “good” values (say at least 0.5) it is necessary that all of ei(m, s, n, 𝜑) values are good enough and this happens only when the computational

complexity 𝜅(m, s, n, 𝜑) of the problem is sufficiently large.

2 If H(x1 , … , xn) is the Harmonic Mean of n positive values, then min (x1 , … , xn) ≤ H(x1 , … , xn) ≤ n min (x1 , … , xn).

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 15 of 21

F I G U R E 4 Total Execution time (*).1 and Execution times for each phase (*).2 of the Algorithm 6 as functions of problem dimension n for
different values s. The value of matrix sparsity is 𝜑=0.30

6 CONCLUSIONS AND FUTURE WORK

The work proposes novel parallel revisitation of the modules, used in block-based Krylov iteration methods, which are based on the overlapping

of communication and computation. For such revisitation, we gave a model of their granularity, in order to evaluate the performance portability, and

verified in a heterogeneous computing environment the theoretical results for a case study related to a classical problem from numerical linear

algebra. Other case studies from different contexts as Chemistry and Material Science, Data Analysis and Machine Learning (ML), Image Processing

should be considered in our future work. Scientific and engineering responses from all these contexts seem to be critical to virtually every the United

Nations Sustainable Development Goals such as “climate action” and “good health and well-being.”32

Imaging technologies (e.g., very large telescopes, medical imaging scanners, and modern microscopes) are based on devices that collect electro-

magnetic energy connected to computing systems that assemble the collected data into images. The “assembling” process typically involves solving

an inverse problem, that is, the image is reconstructed from indirect measurements of the corresponding object. Inverse problems are ubiquitous

in imaging applications,33 including the images deblurring and reconstruction processes,34-38 and are very often based on the solution of linear sys-

tems like those described by Equation (1). These problems typically require processing a large amount of data (the number of pixels or voxels in the

discretized image) and the related equation’s systems have a very large number of equations (e.g., O(109) for a 3D image reconstruction problem).

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 of 21 CARRACCIUOLO ET AL.

F I G U R E 5 Total Execution time (*).1 and Execution times for each phase (*).2 of the Algorithm 6 as functions of problem dimension n for

different values s. The value of matrix sparsity is 𝜑=0.20

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 17 of 21

F I G U R E 6 Total Execution time (*).1 and Execution times for each phase (*).2 of Algorithm 6 as functions of problem dimension n for different

values s. The value of matrix sparsity is 𝜑=0.05

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 of 21 CARRACCIUOLO ET AL.

TA B L E 2 Scheduling of the tests on the
considered systems

If, as often happens, these problems must be solved in real-time (e.g., see X-ray spectroscopy applications described in Reference 39), the use of

particularly efficient algorithms becomes mandatory.

Computer simulation of phenomena in the contest of the Chemistry and of the Material Science give us the opportunity of a glance on the

structure of the matter providing, thanks to the most suitable mathematical models, information both on microscopic details (the masses of the

atoms, the interactions between them, molecular geometry, etc.) and on its macroscopic behavior. Depending on the scale of simulation (ranging

from the continuum to quantum scale), and then from the used mathematical models, the computational kernel of the simulation process could

be the solution of linear systems40 or the solution of sparse eigenvalue problems.41 In both cases, the algorithms based on KM methods such as

respectively the GMRES and the Lanczos iteration, and all their communication-avoiding variants,8 could be exploited to perform simulations whose

computational cost has been up to now prohibitive.

F I G U R E 7 Trends of e performance metrics of Algorithm 6 as functions of problem dimension n for different values s and different values for
sparsity 𝜑 of matrix 

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

CARRACCIUOLO ET AL. 19 of 21

F I G U R E 8 Granularity Portability  of Algorithm 6 as functions of problem dimension n for different values s and different values for
sparsity 𝜑 of matrix 

The need to automate processes to analyze data is at the moment mandatory considered the huge amount of data that continues to increase.

The availability of efficient methods and tools able to automate such process, and to learn from experience, could help in obtaining knowledge

from data, that is, to understand speech or images, make diagnoses in medicine and support basic scientific research. Machine learning algorithms

usually require a high amount of numerical computation. Common operations include optimization (finding the value of an argument that mini-

mizes or maximizes a function using iterative methods that update estimates of the solution via an iterative process) and solving systems of linear

equations.27,28,42 Therefore, it could be worthy of attention to verify whether the use of BKM can help in improving the effectiveness of learning

methods in an attempt to bring them ever closer to the same human mechanisms.

For all the above described applications, the use of considered KM block-based algorithm could be useful to reduce the problem’s “time to

solution” exploiting at the best the hybrid and heterogeneous architecture of the new exascale computing systems.

From all the proposed tests results we can conclude that:

1. to appreciate the improvement in granularity (and granularity portability) of the implementation of Algorithm 6 we should have (as already

shown by the model) that the number of nonzeros elements of is high enough respect to the computation performance potentially expressible

by the computing system;

2. as promised, higher values of s, guarantee a high level of granularity (and granularity portability) especially for higher values n of problem

dimension.

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

20 of 21 CARRACCIUOLO ET AL.

For all that has been said about the predominance of the time spent on matrix power computations, it can be concluded that the improve-

ment of the granularity of the KM block-based methods depends on the quality of algorithms used for the aforementioned operation. These

algorithms, which could for example be inspired by those described in Mohiyuddin et al.,10 must however take into account the possible need to use

a preconditioner as often happens when it is necessary to improve the convergence speed of the iterative methods.

Our future works intends:

• to invest some effort to develop new algorithms able to improve granularity (e.g., algorithms for the matrix-power kernel),

• to elaborate further on the issue related to the evaluation of the performance portability of KM block-based algorithms on the computing systems

which will respond to the new requirements of the incoming exascale era when computing environments will include very large MIMD systems,

heterogeneous CPU-GPU systems and combinations of both all equipped with standard scientific libraries as PETSc43 and MAGMA12 and

• to investigate the performance portability evaluation in a more general performance evaluation framework we developed and already applied in a

few other works18,19,44-46 and we intend to continue to evolve.

ACKNOWLEDGMENT

This work used the infrastructure provided to the SCoPE Data Centre47 of Naples “Federico II” also by project IBISCO, code PIR01_00011, PON

2014-2020.

ORCID

Luisa Carracciuolo https://orcid.org/0000-0002-8521-1645

Valeria Mele https://orcid.org/0000-0002-2643-3483

Lukasz Szustak https://orcid.org/0000-0001-7429-6981

REFERENCES

1. Dongarra J, Sullivan F. Guest editors’ introduction: the top 10 algorithms. Comput Sci Eng. 2000;2(1):22-23. https://doi.org/10.1109/MCISE.2000.

814652.

2. The Production-ready Exascale-enabled Krylov solvers for exascale computing (PEEKS) project web page; 2019. https://icl.utk.edu/peeks/ [Online;

accessed May 20, 2020].

3. The Exascale Computing Project Website. https://www.exascaleproject.org/ [Online; accessed May 20, 2020].

4. Yamazaki I, Hoemmen M, Luszczek P, Dongarra J. Improving performance of gmres by reducing communication and pipelining global collectives. Paper

presented at: Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL;

2017:1118-1127. https://doi.org/10.1109/IPDPSW.2017.65.

5. Lawson CL, Hanson RJ, Kincaid DR, Krogh FT. Basic linear algebra subprograms for Fortran usage. ACM Trans Math Softw. 1979;5(3):308-323. https://doi.

org/10.1145/355841.355847.

6. Kwiatkowski J. Evaluation of parallel programs by measurement of its granularity. Proc Parall Process Appl Math. 2002;2328:145-153. https://doi.org/10.

1007/3-540-48086-2_16.

7. Bai Z, Hu D, Reichel L. A Newton basis GMRES implementation. IMA J Numer Anal. 1994;14(4):563-581. https://doi.org/10.1093/imanum/14.4.563.

8. Hoemmen M. Communication-avoiding Krylov Subspace Methods [PhD thesis]. University of California at Berkeley, Berkeley, CA; 2010:AAI3413388.

9. Ghysels P, Ashby T, Meerbergen K, Vanroose W. Hiding global communication latency in the gmres algorithm on massively parallel machines. SIAM J Sci
Comput. 2013;35(1):C48-C71. https://doi.org/10.1137/12086563X.

10. Mohiyuddin M, Hoemmen M, Demmel J, Yelick K. minimizing communication in sparse matrix solvers. Paper presented at: Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, Portland, Oregon; 2009:36:1-36:12. https://doi.org/10.1145/1654059.1654096.

11. Imberti D, Erhel J. Varying the s in your s-step GMRES. Electron Trans Numer Anal (ETNA). 2017;47:206-230.

12. The matrix algebra on GPU and multicore architecture (MAGMA) library website. http://icl.cs.utk.edu/magma/ [Online; accessed May 20, 2020].

13. The scalable LAPACK project. http://www.netlib.org/scalapack/ [Online; accessed May 20, 2020].

14. Pennycook SJ, Sewall JD, Lee VW. Implications of a metric for performance portability. Future Generat Comput Syst. 2017;92:947–958. https://doi.org/

10.1016/j.future.2017.08.007.

15. DOE Centres of Excellence Performance Portability Meeting: Post-meeting Report Technical Report LLNL-TR-700962. Livermore: Lawrence Livermore National

Laboratory; 2016. https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-2016-FinalReport_0.pdf.

16. Laccetti G, Montella R, Palmieri C, Pelliccia V. The high performance Internet of Things: using GVirtuS to share high-end GPUs with ARM based cluster

computing nodes. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

LNCS vol. 8384 (PART 1); 2014:734-744. https://doi.org/10.1007/978-3-642-55224-3_69.

17. Carracciuolo L, D’Amore L, Mele V. Toward a fully parallel multigrid in time algorithm in PETSc environment: a case study in ocean models. Paper presented

at: Proceedings of the 2015 International Conference on High Performance Computing Simulation (HPCS), Amsterdam, Netherlands; 2015:595-598.

https://doi.org/10.1109/HPCSim.2015.7237098.

18. Mele V, Constantinescu EM, Carracciuolo L, D’amore L. A PETSc parallel-in-time solver based on MGRIT algorithm. Concurr Comput Pract Exp.

2018;30(24):4928. https://doi.org/10.1002/cpe.4928.

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-8521-1645
https://orcid.org/0000-0002-8521-1645
https://orcid.org/0000-0002-2643-3483
https://orcid.org/0000-0002-2643-3483
https://orcid.org/0000-0001-7429-6981
https://orcid.org/0000-0001-7429-6981
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1109/MCISE.2000.814652
https://icl.utk.edu/peeks/
https://www.exascaleproject.org/
https://doi.org/10.1109/IPDPSW.2017.65
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1007/3-540-48086-2_16
https://doi.org/10.1007/3-540-48086-2_16
https://doi.org/10.1093/imanum/14.4.563
https://doi.org/10.1137/12086563X
https://doi.org/10.1145/1654059.1654096
http://icl.cs.utk.edu/magma/
http://www.netlib.org/scalapack/
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007
https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-2016-FinalReport_0.pdf
https://doi.org/10.1007/978-3-642-55224-3_69
https://doi.org/10.1109/HPCSim.2015.7237098
https://doi.org/10.1002/cpe.4928

CARRACCIUOLO ET AL. 21 of 21

19. Mele V, Romano D, Constantinescu EM, Carracciuolo L, D’Amore L. Performance evaluation for a PETSc parallel-in-time solver based on the MGRIT

algorithm. Paper presented at: Proceedings of the Euro-Par 2018: Parallel Processing Workshops, Turin, Italy; 2019:716-728. https://doi.org/10.1007/

978-3-030-10549-5_56.

20. Future and emerging technologies: work part of the European horizon 2020 program. http://ec.europa.eu/research/participants/data/ref/h2020/wp/

2016_2017/main/h2020-wp1617-fet_en.pdf [Online; accessed May 20, 2020].

21. Carracciuolo L, Lapegna M. Implementation of a non-linear solver on heterogeneous architectures. Concurr Comput Pract Exp. 2018;30(24):4903. https://

doi.org/10.1002/cpe.4903.

22. Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Filadelfia, USA: Society for Industrial and Applied Mathematics; 2003.

23. Rosendale JV. Minimizing inner product data dependencies in conjugate gradient iteration. Proceedings of the International Conference on Parallel

Processing (ICPP); 1983:44-46. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830026339.pdf.

24. Golub GH, Van Loan CF. Matrix Computations. 4th ed. Baltimora: JHU Press; 2013.

25. Çatalyürek ÜV, Aykanat C, Uçar B. On two-dimensional sparse matrix partitioning: models, methods, and a recipe. SIAM J Sci Comput. 2010;32(2):

656-683. https://doi.org/10.1137/080737770.

26. Smith JE. Characterizing computer performance with a single number. Commun ACM. 1988;31(10):1202-1206. https://doi.org/10.1145/63039.63043.

27. Zhang HH, Genton M, Liu P. Compactly Supported Radial Basis Function Kernels Institute of Statistics Mimeo Series No. 2570. Raleigh, USA: , Department of

Statistics of North Carolina State University; 2004. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.3200.

28. Genton MG. Classes of kernels for machine learning: a statistics perspective. J Mach Learn Res. 2002;2:299-312.

29. XLATMR: random matrices from the LAPACK test suite documentation page; 2019. https://math.nist.gov/MatrixMarket/data/misc/xlatmr/xlatmr.html

[Online; accessed May 20, 2020].

30. PCI Express Wikipedia page. https://en.wikipedia.org/wiki/PCI_Express [Online; accessed May 20, 2020].

31. Harmonic mean Wikipedia page. https://en.wikipedia.org/wiki/Harmonic_mean [Online; accessed May 20, 2020].

32. European Commission Orientations towards the first strategic plan for Horizon Europe; 2019. https://ec.europa.eu/info/sites/info/files/research_and_

innovation/strategy_on_research_and_innovation/documents/ec_rtd_orientations-he-strategic-plan_122019.pdf.

33. Chung J, Knepper S, Nagy JG. Large-Scale Inverse Problems in Imaging. New York, NY: Springer; 2015:47-90.

34. Antonelli L, Carracciuolo L, D’Amore L, Murli A. MEDITOMO: an high performance software for SPECT imaging. Int J Comput Math. 2009;86:31-56.

https://doi.org/10.1080/00207160701504113.

35. Murli A, D’Amore L, Carracciuolo L, Ceccarelli M, Antonelli L. High performance edge-preserving regularization in 3D SPECT imaging. Parall Comput.

2008;34:115-132. https://doi.org/10.1016/j.parco.2007.12.004.

36. Carracciuolo L, D’Amore L, Murli A. Towards a parallel component for imaging in PETSc programming environment: a case study in 3-D echocardiography.

Parall Comput. 2006;32:67-83. https://doi.org/10.1016/j.parco.2005.09.001.

37. Montella R, Kosta S, Oro D, et al. Accelerating linux and android applications on low-power devices through remote GPGPU offloading. Concurr Comput
Pract Exp. 2017;29(24):e4286. https://doi.org/10.1002/cpe.4286.

38. Marcellino L, Montella R, Kosta S, et al. Using GPGPU accelerated interpolation algorithms for marine bathymetry processing with on-premises and

cloud based computational resources. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), LNCS; vol. 10778, 2018:14-24. https://doi.org/10.1007/978-3-319-78054-2_2.

39. Siegel A., Draeger E., Deslippe J., et al. Early application results on pre-exascale architecture with analysis of performance challenges and projections Exascale
Computing Project (ECP) WBS 2.2 Milestone Report PM-AD-1080. Springfield, USA: US Department of Energy; 2020. https://www.exascaleproject.org/wp-

content/uploads/2020/03/ECP_AD_Milestone-Early-Application-Results_v1.0_20200325_FINAL.pdf.

40. Carracciuolo L, Casaburi D, D’Amore L, D’Avino G, Maffettone PL, Murli A. Computational simulations of 3D large-scale time-dependent viscoelastic flows

in high performance computing environment. J Non-Newtonian Fluid Mech. 2011;166(23):1382-1395. https://doi.org/10.1016/j.jnnfm.2011.08.014.

41. Saad Y, Chelikowsky JR, Shontz SM. Numerical methods for electronic structure calculations of materials. SIAM Rev. 2010;52(1):3-54. https://doi.org/

10.1137/060651653.

42. Goodfellow Ian, Bengio Yoshua, Courville Aaron. Deep Learning. Cambridge, USA: MIT Press; 2016. http://www.deeplearningbook.org.

43. Balay S, Abhyankar S, Adams MF, et al. PETSc Web page; 2019. http://www.mcs.anl.gov/petsc [Online; accessed May 20, 2020].

44. D’Amore L, Mele V, Laccetti G, Murli A. Mathematical approach to the performance evaluation of matrix multiply algorithm. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS; vol. 9574, 2016:25-34. https://doi.org/

10.1007/978-3-319-32152-3_3.

45. Arcucci R, D’Amore L, Mele V. Mathematical approach to the performance evaluation of three dimensional variational data assimilation. AIP Conf Proc.

2017;1836(1):020001. https://doi.org/10.1063/1.4981941.

46. D’Amore L, Mele V, Romano D, Laccetti G. Multilevel algebraic approach for performance analysis of parallel algorithms. Comput Inform.

2019;38(4):817–850. https://doi.org/10.31577/cai_2019_4_817.

47. The SCoPE computing infrastructure website. http://www.scope.unina.it/ [Online; accessed May 20, 2020].

How to cite this article: Carracciuolo L, Mele V, Szustak L. About the granularity portability of block-based Krylov methods in

heterogeneous computing environments. Concurrency Computat Pract Exper. 2021;33:e6008. https://doi.org/10.1002/cpe.6008

 15320634, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6008 by C

zestochow
a U

niversity O
f, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/978-3-030-10549-5_56
https://doi.org/10.1007/978-3-030-10549-5_56
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-fet_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-fet_en.pdf
https://doi.org/10.1002/cpe.4903
https://doi.org/10.1002/cpe.4903
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830026339.pdf
https://doi.org/10.1137/080737770
https://doi.org/10.1145/63039.63043
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.3200
https://math.nist.gov/MatrixMarket/data/misc/xlatmr/xlatmr.html
https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/Harmonic_mean
https://ec.europa.eu/info/sites/info/files/research_and_innovation/strategy_on_research_and_innovation/documents/ec_rtd_orientations-he-strategic-plan_122019.pdf
https://ec.europa.eu/info/sites/info/files/research_and_innovation/strategy_on_research_and_innovation/documents/ec_rtd_orientations-he-strategic-plan_122019.pdf
https://doi.org/10.1080/00207160701504113
https://doi.org/10.1016/j.parco.2007.12.004
https://doi.org/10.1016/j.parco.2005.09.001
https://doi.org/10.1002/cpe.4286
https://doi.org/10.1007/978-3-319-78054-2_2
https://www.exascaleproject.org/wp-content/uploads/2020/03/ECP_AD_Milestone-Early-Application-Results_v1.0_20200325_FINAL.pdf
https://www.exascaleproject.org/wp-content/uploads/2020/03/ECP_AD_Milestone-Early-Application-Results_v1.0_20200325_FINAL.pdf
https://doi.org/10.1016/j.jnnfm.2011.08.014
https://doi.org/10.1137/060651653
https://doi.org/10.1137/060651653
http://www.deeplearningbook.org
http://www.mcs.anl.gov/petsc
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1063/1.4981941
https://doi.org/10.31577/cai_2019_4_817
http://www.scope.unina.it/
https://doi.org/10.1002/cpe.6008
https://doi.org/10.1002/cpe.6008
https://doi.org/10.1002/cpe.6008

