
Architectural Adaptation and Performance-
Energy Optimization for CFD Application

on AMD EPYC Rome
Lukasz Szustak , Roman Wyrzykowski , Senior Member, IEEE, Lukasz Kuczynski, and Tomasz Olas

Abstract—The advantages of the second-generation AMD EPYC Rome processors can be successfully used in the race to Exascale.

However, the novel architecture’s complexity makes it challenging to adapt demanding scientific codes - like stencil ones - to platforms

with Rome CPUs. This article tackles this challenge by exploring the adaptation of the stencil-based CFD (computational fluid

dynamics) application called MPDATA to these processors’ influential features. We show that the previously proposed parametric

adaptation methodology can be profitably applied to extend the performance portability of the memory-bound MPDATA on the AMD

EPYC architecture. The extension of the parametric adaptation on the novel architecture requires careful consideration of two relevant

aspects that reflect splitting the Rome architecture into multiple dies – features of the cache hierarchy and partitioning cores into work

teams. The article also investigates the correlation between the performance optimizations and energy efficiency for a ccNUMA

platform powered by top-of-the-line 64-core AMD Rome 7742 CPUs, comparing the results against two servers with Intel Xeon

Scalable processors of different generations. Even without appealing to prices, the achieved performance and energy efficiency results

are a solid argument confirming the competitiveness of AMD Rome processors against Intel Xeon CPUs in scientific applications.

Index Terms—CFD, MPDATA, AMD EPYC Rome, shared-memory programming, performance portability, energy efficiency

Ç

1 INTRODUCTION

THE choice of processors available for high performance
computing (HPC) has been growing for a number of years

[1]. There are no fewer than three major types of CPUs avail-
able for HPC duties, including x86, Arm, and Power architec-
tures with more than half a dozen reliable suppliers totally,
along with two -– soon to be three –- GPU architectures.
Simultaneously, the overwhelming majority of HPC systems
today are equipped with Intel CPUs and sometimes NVIDIA
GPUs. From the year 2020, this is going to start to change.

The most significant source of diversity in the near-term is
within the x86 world [1], where AMD’s EPYC architecture
gives Intel the most substantial competition since the times of
AMD Opteron processors. In particular, the second genera-
tion of EPYC CPUs, codenamed “Rome,” almost certainly
will take over a significant part of Intel’s share in the server
market, includingHPC.Rome’s promising price-performance
ratio was undoubtedly crucial to its selection for a number of
supercomputers in the USA and Europe. An example is a
new BullSequana XH2000 system that operates in the Euro-
pean Centre for Medium-RangeWeather Forecasts (ECMWF)
located in Bologna, Italy [2]. It is powered by EPYC Rome
7002 series processors.

Based on 7 nm technology, the second-generation AMD
EPYC CPUs of the 7002 series bring large core counts, more
efficient memory hierarchy, and the upgraded Infinity Fabric
[3], all to enable high performance and better handle the mas-
sively parallel workloads. The new architecture of AMDEPYC
processors offers up to 64 cores and the base clock speeds from
2.0 to 3.2 GHz. They are delivered for both a single-socket and
dual-socket systems, supportingmaximally 128 cores.

Emerging computing architectures such as the second-gen-
eration AMD EPYC are characterized by a large number of
parameters whose diversitymakes it difficult to ensure perfor-
mance portability for real-life applications [4]. An application’s
sustained performance is affected by such features of comput-
ing architectures as number and characteristics of processors,
cores, and threads; type of SIMD hardware; parameters of
memory hierarchy; the relationship between scalar and SIMD
frequency, andmanyothers. SplittingAMDEPYCarchitecture
[5] into multiple dies and NUMA (non-uniform memory
access) domains adds another dimension to the space of possi-
ble solutions. Consequently, utilizing the full capabilities of
AMD EPYC Rome processors in scientific and commercial
environments is a significant challenge [6], [7], [8].

Our previous work [4] addressed the issue of performance
portable programming of heterogeneous stencil codes for a
wide range of shared-memory systems with Intel processors.
The application we studied as a use case implements the
Multidimensional Positive Definite Advection Transport
Algorithm (MPDATA) [9]. This CFD (computational fluid
dynamics) application is one of the main parts of the EULAG
geophysical model (https://www2.mmm.ucar.edu/eulag)
developed for simulating thermo-fluid flows across a wide
range of scales and real scenarios [10].

� The authors are with the Department of Computer Science, Czestochowa
University of Technology, 42-201 Czestochowa, Poland. E-mail: {lszustak,
roman, lkucz, olas}@icis.pcz.pl.

Manuscript received 16 Nov. 2020; revised 22 Mar. 2021; accepted 23 Apr. 2021.
Date of publication 7 May 2021; date of current version 4 June 2021.
(Corresponding author: Lukasz Szustak.)
Recommended for acceptance by J. Zola.
Digital Object Identifier no. 10.1109/TPDS.2021.3078153

2852 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7429-6981
https://orcid.org/0000-0001-7429-6981
https://orcid.org/0000-0001-7429-6981
https://orcid.org/0000-0001-7429-6981
https://orcid.org/0000-0001-7429-6981
https://orcid.org/0000-0003-1724-1786
https://orcid.org/0000-0003-1724-1786
https://orcid.org/0000-0003-1724-1786
https://orcid.org/0000-0003-1724-1786
https://orcid.org/0000-0003-1724-1786
https://orcid.org/0000-0002-7286-8023
https://orcid.org/0000-0002-7286-8023
https://orcid.org/0000-0002-7286-8023
https://orcid.org/0000-0002-7286-8023
https://orcid.org/0000-0002-7286-8023
https://www2.mmm.ucar.edu/eulag
mailto:lszustak@icis.pcz.pl
mailto:roman@icis.pcz.pl
mailto:lkucz@icis.pcz.pl
mailto:olas@icis.pcz.pl

MPDATA executes a set of stencil kernels with heteroge-
neous patterns and represents a memory-bound application.
The adaptation (or customization) methodology proposed in
paper [4] allows us to develop the automatic transformation
of the MPDATA code, achieving scalable, high performance
for all tested ccNUMA platforms with Intel processors of last
generations. This methodology consists of a set of parametric
optimizations, including (3+1)D decomposition, islands-of-
cores strategy, exploiting data parallelism and simultaneous
multithreading, data flow synchronization, and vectorization.

The working hypothesis verified in this paper is the possi-
bility of using this methodology to provide the optimization
of the MPDATA code for the novel AMD Rome architecture.
It is expected that the resulting code can adapt to the parame-
ters of hardware components and their interaction with the
proposed parametric optimizations. Furthermore, based on
results achieved in our work [11], this study investigates the
correlation between performance and energy efficiency for a
ccNUMA platform powered by two top-of-the-line AMD
Rome 7742 CPUs, each with 64 cores. The hardware-based
technique [12] provides the accuracy and reliability of
energy/power measurements with the Yokogawa WT310
power meter [13]. Finally, we expect to receive a solid argu-
ment confirming or denying the competitiveness of AMD
EPYC Rome processors versus Intel Xeon CPUs in scientific
applications.

The main contributions of this work are:

1) Based on a memory-bound CFD application called
MPDATA, we provide a comprehensive study of
two interrelated issues:
a) systematic adaptation of a real-world scientific

application to the AMD EPYC Rome architecture
considering its prominent features. The authors
are not aware of papers studying this issue;

b) credible verification of the competitiveness of
AMD Rome processors against Intel Xeon CPUs
in scientific computing, considering both perfor-
mance and energy efficiency.

2) It is demonstrated that the extension of the paramet-
ric adaptation methodology on the novel architec-
ture requires careful consideration of two relevant
aspects that reflect splitting the Rome architecture
into multiple dies – features of the cache hierarchy
and partitioning cores into work teams. Determining
the optimal MPDATA configuration adjusted to
essential features of the AMD Rome architecture
instead of using a solution obtained for Intel CPUs
allows improving performance up to more than 2.5
times and energy consumption up to 2.15 times.

3) It is shown that despite significant differences in the
behavior of particular optimizations for various NPS
(NUMA per socket) modes of configuring the Rome
architecture, the combination of these optimizations
leads to practically the same performance and energy
consumption for allmodes. The achieved performance
results are verified by the Roofline-based model,
which connects the MPDATA performance with the
mainmemory and cache bandwidth.

4) Based on the performance-energy comparison of the
dual-socket platform with 64-core AMD Rome 7742

CPUs versus two servers with Intel Xeon Scalable
processors of different generations – Intel Xeon Plati-
num 8180 and 8280, we show that the Rome-based
platform outperforms both Intel-based systems in
the performance and energy consumption, allowing
us to execute computations 1.23–1.36 times faster
with up to 1.12 times fewer energy costs. Therefore,
even without appealing to prices, the achieved per-
formance and energy efficiency results are a solid
argument confirming the competitiveness of AMD
Rome processors against Intel Xeon CPUs in scien-
tific applications.

This paper is organized as follows. Section 2 discusses
related works, while Sections 3 and 4 outline respectively the
architecture of the second generation of AMD EPYC and the
parallelization methodology previously proposed for the
MPDATA application. Section 5 describes details of adapting
and optimizing the MPDATA parallel code for the EPYC
Rome architecture, while Section 6 introduces the methodol-
ogy of experimental evaluation, including energy/power
measurements. Section 7 describes the results of experiments
supported by the performance model presented in Section 8.
The comparison to Intel CPUs is a topic of Section 9,while Sec-
tion 10 concludes the paper.

2 RELATED WORKS

In July 2017, AMD launched the first generation of its EPYC
processors (codenamed ”Naples”) that disrupted data cen-
ters and HPC installations [14]. The AMD second genera-
tion of EPYC processors changes the server ecosystem,
offering over twice the first generation’s peak performance
in the same socket, with a similar thermal envelope. Besides
upgrading CPU cores with 15 percent more performance at
the same clock speeds, this innovative AMD design could
double the number of cores.

Utilizing the x86 architecture, the novel AMD EPYC 7002
series allows porting existing applications practically auto-
matically bymerely compiling themusing the AMDOptimiz-
ing C/C++ Compiler (AOCC), GNU compiler, PGI compiler,
or even the Intel compiler [15]. An example of applying the
GNU compiler is benchmarking the Weather Research and
Forecasting (WRF) Model [7] with different generations of
AMD EPYC processors. The Intel compiler is also used for
assessing the performance of parallel application codes in
materials engineering, and chemistry [6]. The focus is on the
baseline cluster with 20-core Intel Skylake Gold 6148/2.4GHz
processors and two clusters powered by AMD Rome CPUs –
32-core AMD EPYC 7452 and 7502. Concerning a core-to-core
comparison, this assessment shows that the Rome 7452 and
7502 perform on a par with the Intel Gold 6148, but a number
of applicationswith heavymemory bandwidth demands per-
form poorly on the AMD systems. Also, the achieved perfor-
mance is sensitive to the effective use of the AVX vector
instructions. Applications with low utilization of AVX-512
bring a weaker performance of the Skylake-based systems
and better performance on the Rome-based clusters. Finally,
in a node-to-node comparison, the AMD Rome systems
deliver superior results compared to the Skylake Gold 6148
cluster for all applications, with an average improvement
factor of 1.49.

SZUSTAK ET AL.: ARCHITECTURAL ADAPTATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR CFD APPLICATION ON AMD EPYC... 2853

An example of using the AOCC compiler [16] powered by
AMDOptimizingCPULibraries (AOCL) [17] is portingGRO-
MACS molecular dynamics simulations [8]. AOCL contain a
set of numerical libraries tuned specifically for the AMD
EPYC processor family. Among others, this set includes the
FFTW library that implements the FFT algorithm. The library
compiled from the source is used in porting GROMACS.
Another use case of exploring the actual cost/performance
ratio of various AMD EPYC Rome processors provides work
[3], which benchmarks different Rome processors against
Intel Xeon Platinum 8280 on a commercial application – the
Facebook’s RocksDB Database. Nevertheless, at this moment,
the authors are not aware of papers investigating in a more or
less systematic way the issues of code adaptation and perfor-
mance portability of parallel scientific codes for the AMD
EPYC Rome architecture, taking into account its prominent
features.

Particularly, the last statement relates to stencil-based
codes – a class of memory-bound applications that are
quite common among scientific applications [18]. The sten-
cil computations have traditionally been optimized by
many authors over the years, especially considering vari-
ous hardware platforms such as multicore CPUs [19],
short-vector SIMD architectures [20], Intel Xeon Phi [21],
GPU [22] and FPGA [23] accelerators. One of the main
directions of improving the efficiency of stencil computa-
tions is focused around different methods for the domain
decomposition [24], including overlapping neighbor
domains [25]. These methods include space and temporal
blocking [26], diamond [27] and multi-dimensional [28]
tiling. These methods are oriented towards exploiting
the data locality and providing workloads of computing
resources balanced as much as possible. These works’ limi-
tation is their focus on the homogeneous stencil computa-
tions, with a single pattern repeated for consecutive time
steps. Moreover, typically the code transformations take
place between successive steps. In contrast, a combination
of parametric optimization techniques developed in our
previous work [4] is applied within every MPDATA time
step and is dedicated to a set of heterogeneous stencils
with different patterns.

The closest approaches were proposed in papers [25],
[29], and particularly in paper [30] devoted to generating
and optimizing stencil programs automatically. Similarly to
our approach, these papers consider the code transforma-
tion using the overlapped tiling technique. It enables
leveraging the synchronization and enhancing the data
locality at the cost of redundant computations. But again
these works address only the homogeneous stencil compu-
tations with a single pattern repeated in each step.

Apart from achieving high performance, the energy effi-
ciency of HPC parallel workloads become a focus of atten-
tion in recent times [31]. Besides the tendency of energy
reduction by re-engineering the hardware, another trend is
observed with great potential for energy savings realized by
transforming and completely rethinking the algorithms [32]
and software [33] dedicated for HPC systems. This work
belongs mainly to the second trend, and partly follows our
previous paper [11] that studied the impact of performance
optimizations on the energy efficiency of MPDATA for the
first generation of Intel Xeon Scalable processors.

3 ARCHITECTURE OF THE SECOND GENERATION

OF AMD EPYC PROCESSORS

This work explores the dual-socket HPE Server ProLiant
DL385 Gen10 (https://www.hpe.com) consisting of two 64-
core AMD 7742 CPUs with 256 GB of DDR4 memory oper-
ating at 3200 MHz. The basic software package includes the
CentOS Linux operating system and AMD Optimizing C/C
++ Compiler v2.1. Table 1 summarizes this platform.

The AMD EPYC 7742 CPU represents the second genera-
tion of EPYC processors [34]. The design of this CPU con-
sists of a single central I/O hub (or I/O Die) [5] through
which all CPU components communicate. The CPU uses a
collection of 8-core chiplets, called Core Complex Dies
(CCDs), connected to the I/O Die through dedicated high-
speed Infinity Fabric links. Through this die, a given CCD
can communicate with other CCDs and the main memory,
as well as with external devices connected by the PCIe bus.
As a result, the EPYC 7742 CPU can provide one NUMA
domain for a single processor, which is equivalent to the
NUMA layout offered by current Intel Xeon CPUs [35]. This
mode is known as NPS1 [5].

This top-of-the-line Rome CPU contains 8 CCDs. Every
CCD consists of two Core-Complexes (CCXs); each of them
embraces four cores and 16 MB of L3 cache. As a result,
each CCD provides 32 MB of L3 cache. A single core con-
tains the L2 inclusive cache of 512 KB size and the L1-D
cache of 32KB size. The four cores of a given CCX share
16MB of its L3 cache segment, rather than requesting access
to any L3 cache from other CCXs. Thus, this design is an
example of the non-uniform cache architecture (NUCA)
[36]. The total capacity of the L3 cache depends on the num-
ber of CCDs, and can maximally reach 256 MB for a single
64-core CPU. Each processor also includes the 8-channel
memory controller providing DDR4 memory speeds up to
3200MHz, where each memory channel supports up to 2
DIMMs.

TABLE 1
Specification of HPE ProLiant DL385 Gen10 Server Equipped

With Two AMD 7742 CPUs (https://www.amd.com)

Base frequency [GHz] 2.25

Max. boost single-core freq. [GHz] 3.4

Sockets 2
Cores (Logical cores) 2�64 (2�128)
Core-Complexes (CCXs) 2� 8� 2

Core Complex Dies (CCDs) 2� 8

Type of SIMD (SIMD width) AVX2 (256-bit)

L1 per core [KB] 64

L2 per core [KB] 512

L3 per CCX [MB] 16

L3 per CCD [MB] 32
Total size of L3 [MB] 512 = 2� 8� 32

Main memory [GB]/DDR channels 2� 8� 16 / 2� 8

Type of memory DDR4-3200

Memory bandwidth [GB/s] 2� 204:8

Peak performance for SIMD [Gflop/s] 2304

2854 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

https://www.hpe.com
https://www.amd.com

Like other EPYC 7002 series processors, the EPYC 7742
CPU uses a NUMA architecture with separate quadrants,
each with two CCDs, two memory channels, and 32 I/O
lanes. The four logical quadrants allow the processor to be
partitioned into different NUMA domains [5]. These
domains are designated as NUMA per socket (NPS). In the
NPS1 mode, all cores on the processor, all memory and
PCIe devices connected to it are in one MUMA domain. It
means that memory is interleaved across the eight memory
channels. In the NPS2 and NPS4 modes, the processor is
partitioned into two and four NUMA domains, respec-
tively. For example, each logical quadrant of the CPU is a
NUMA domain in the NPS4 mode, with memory being
interleaved across the two memory channels in each quad-
rant. In general, NPS2 and NPS4 can provide slightly better
bandwidth than NPS1. Finally, each L3 cache slice corre-
sponding to one CCX is exposed as a NUMA domain. On
the dual-processor server used in this work, 32 NUMA
domains could be exposed at most. Using BIOS settings, the
server could be configured as NPS1, NPS2, or NPS4, with
an additional option to configure L3 cache slices as NUMA
domains.

The CPU design permits simultaneous multithreading
(SMT), which results in 128 logical cores for the 64-core
CPU. The architecture of Rome processors offers full AVX2
support. It enables single-cycle AVX2 calculations, rather
than splitting 256-bit instructions into two separate 128-bit
operations, as is the case of the first generations of AMD
EPYC. This design also includes two FMA (Fused Multiple-
Add) units per core. As a result, each core can execute up to
16 double precision floating-point operations per cycle.
There is no restriction for CPU frequency when using AVX2
instructions. The clock speed depends on temperature and
voltage requirements regardless of the instructions used.

The CPUs used in the study are clocked at the base fre-
quency of 2.25 GHz. The maximum boost for a single core is
3.4 GHz. The theoretical peak performance of the test plat-
form is 2304 Gflop/s for SIMD. These values refer to dou-
ble-precision non-FMA and the base frequency. For FMA
instructions, the peak performance is twice higher.

4 PARALLELIZATION OF MPDATA APPLICATION

4.1 Overview of MPDATA

The MPDATA algorithm belongs to CFD methods for
numerical modeling of advection transport phenomena.
MPDATA represents a general approach to modeling com-
plex geophysical flows from micro to planetary scales [9]. It
corresponds to the second-order accurate nonoscillatory
iterative algorithms and is defined using a finite-difference
scheme over structured rectilinear grids. As a representative
of forward-in-time algorithms, MPDATA solves the advec-
tion of a non-diffusive quantityC in a flow field [37]

@C

@t
þ divðVCÞ ¼ 0; (1)

where V is the velocity vector. In this work, we focus on
modeling 3D advection problems defined on structured rec-
tilinear grids. This means that MPDATA is defined in a 3D
domain of sizes n�m� l according to i� , j� , and
k�dimensions, respectively.

In general, MPDATA is intended to run long simulations
that engage even many thousands of time steps. Each time
step takes five 3D matrices (arrays) as an input and returns
a single 3D matrix (array) reused in the next step. Each
MPDATA step performs [4] a series of 17 kernels that
depend on each other (the outcomes of a given kernel typi-
cally are inputs for the subsequent ones). Every MPDATA
kernel represents a 3D stencil code that updates all elements
of its output array, according to a particular pattern. The
detailed description of MPDATA is presented in [9], [21].

4.2 Parallelization Methodology for MPDATA Code
on Shared Memory Systems

In the basic version of the parallel MPDATA code [4], [21],
subsequent kernels are executed sequentially, one by one,
with each kernel processed in parallel using OpenMP. The
data parallelism and vectorization are employed to distrib-
ute kernels across computing resources, including logical
cores and vector units. Particularly, #pragma omp for

directive across outer-most loop (i�dimension) is applied
to split loop iterations among logical cores, and then
#pragma omp for simd directive allows us to incorporate
vectorization along inner-most loop (k�dimension).

Since the code is not optimized for cache reusing, the per-
formance of the basic MPDATA parallelization is strongly
limited by the main memory bandwidth. As a result, the rel-
atively low operational intensity of each MPDATA kernel
[4] is not high enough to efficiently utilize the resources of
modern processors. In our works [4], [11], [21], [35], [38], a
set of optimizations was developed to exploit resources of
multicore ccNUMA/SMP systems more efficiently. The
resulting parallelization methodology consists of the follow-
ing parametric optimization steps:

� (3+1)D decomposition of MPDATA [21] – this step
explores spatial blocking across the different kernels,
employing overlapped tiling with redundant com-
putations, while all kernels are grouped into five
packages using loop fusion. Besides increasing the
computational intensity, this approach reduces the
main memory traffic and provides efficient utiliza-
tion of L3 and L2 levels of the cache hierarchy.

� Partitioning cores into independent work teams [35] –
this step relieves the overhead of inter- and intra-
CPU data traffic within the cache hierarchy of the
ccNUMA system by setting the set of groups of
physical cores mapped on MPDATA work teams. As
a result, two scenarios for executing MPDATA ker-
nels are proposed: the first one performs fewer com-
putations but requires more data traffic, while the
second scenario replaces the implicit data traffic by
replicating some of the calculations.

� Data-flow strategy of synchronization [38] – the primary
purpose is to synchronize only interdependent
threads following the data dependencies between
the MPDATA kernels, instead of using the barrier
approach that typically synchronizes all threads.
This strategy reduces the cost of synchronization.

� Vectorization of MPDATA kernel [4] – the 7-step proce-
dure is developed for the MPDATA code transforma-
tion that allows the compiler to automatically perform

SZUSTAK ET AL.: ARCHITECTURAL ADAPTATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR CFD APPLICATION ON AMD EPYC... 2855

the vectorization, and ensures the performance porta-
bility of vectorizingMPDATA computations.

Fig. 1 illustrates the proposed distribution of the MPDATA
workload across computing resources. First, the MPDATA
domain is split intoP sub-domains that are processed in paral-
lel by P hardware teams of cores (work teams) available in a
given ccNUMA platform (Fig. 1a). Every work team processes
a given sub-domain following the (3+1)D decomposition
(Fig. 1b). Each sub-domain is partitioned into blocks of the size
that enables efficient utilization of L3 and L2 caches. The suc-
cessive blocks are processed sequentially, one by one. Each
block exploits data parallelism across i� and j�dimensions
(Fig. 1c) to distribute workload across CN cores of a given
work team. As a result, each MPDATA block is partitioned
into a set of CN sub-blocks. Finally, the vectorization is per-
formed along k�dimension for appropriate chunks of data
arrays corresponding to the sub-block.

The computations performed by every core provide exe-
cuting the MPDATA kernels grouped into 5 packages P1-
P5. The package P1 consists of the first four kernels and
requires load input data from the main memory only. The
rest of the packages operate on (i) the data stored in the
cache hierarchy by P1 and (ii) intermediate results of prior
packages that all should be located in the cache. More pre-
cisely, the size of sub-blocks has to allow keeping data in
the L2 cache during the execution of a given package, while
the block size should enable keeping required data in the L3
cache for executing all packages.

To meet the performance portability challenge, we devel-
oped [4] the parametric transformation/adaptation of the
MPDATA code to ccNUMA shared memory systems. As a
result, the customizableMPDATA code follows various hard-
ware architectural issues such as memory hierarchy, thread-
ing, vectorization, and their interaction with the MPDATA
code. This adaptationwas successfully applied to achieve sus-
tained high performance for a wide range of Intel-based sys-
tems. Among these systems were 2-socket servers with Intel
Xeon CPUs based on Skylake SP, Broadwell, and Haswell
architectures. For example, for a platform built with 28-core
Intel Platinum 8180 CPUs, the proposed adaptation acceler-
ates the MPDATA application more than 10 times [11] com-
pared to the basic version of code.

The architecture of Intel Xeon CPUs provides a single
NUMA domain per every socket. Each domain contains a
group of CPU cores connected to a single last-level cache
(LLC) domain. There are typically two NUMA domains in a

dual-socket Intel-based platform with two groups of cores
and two LLC domains. As a result [4], the optimal number
of MPDATA work teams is basically equal to the number of
processors. At the same time, the presence of two memory
controllers per CPU affects the main memory differently for
different cores. Consequently, the final number of work
teams is twice the number of CPUs in the server.

For modern Intel Xeon CPUs, like Intel Platinum 8180
and 8280 based respectively on Skylake SP and Cascade
Lake architectures, the size of the L2 cache is relatively large
(1MB per core). Simultaneously, these CPUs feature rela-
tively small L3 caches - only 38,5MB for 28-core Intel CPUs
(1.37 MB of L3 per core). Moreover, since Skylake SP and
Cascade Lake processors feature the non-inclusive L3 cache
[39], the effective size TCSP of L3 cache is further limited to
the aggregate size of L2 caches for all cores (TCSP = 28MB).
The reason is that instead of copying data both to the L2
and L3 caches as in the case of previous generations of
CPUs, now data are loaded directly into the L2 cache of a
given core. Hence, the block size optimization based on the
size of the effective size (TCSp) of the L3 cache also allows
keeping all required data in the L2 cache assigned to a core
[4]. In this cache, the core keeps data required to processes a
sequence of kernels within a package.

Finally, details of vectorizing computation within
cores are determined. For Intel 8180 and 8280 CPUs, the
AVX-512 SIMD extension is applied, allowing to increase
the performance on the 2-socket 8180 CPUs about 2.8
times [11].

5 ADAPTATION OF MPDATA PARALLEL CODE TO

EPYC ROME ARCHITECTURE IN COMPARISON

TO INTEL-BASED SYSTEMS

The MPDATA code’s adaptation to new features of AMD
Rome architecture has to ensure high performance and scal-
ability of the resulting code implemented with OpenMP.
The differences between Xeon and Rome processors radi-
cally affect the adaptation methodology for the MPDATA
code, including selecting the optimal number of work teams
and determining the best size of MPDATA blocks.

5.1 Adapting MPDATA Code to Core Complex Dies

In theNPS1mode, the design of EPYCRomeCPUs provides a
NUMA model comparable to Xeon processors, with a single
socket and single NUMA domain. Thus similarly to dual-

Fig. 1. MPDATA decomposition [4]: a) domain partitioning into sub-domains, b) sub-domain decomposition into blocks of size adjusted to cache
capacity, c) parallel execution of kernels within a single block by a given work team, and d) synchronization.

2856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

socket servers based on Intel Xeon CPUs, we can basically use
two MPDATAwork teams for two AMD Rome CPUs to alle-
viate the inter-CPU communication overhead. However,
since Rome CPUs in general contain more NUMA domains
corresponding both to the NPS2/NPS4 modes and L3 caches,
we can use more MPDATA work teams to reduce the intra-
CPUdata traffic.

Every 64-core Rome CPU contains eight 8-core complex
dies, each corresponding to an L3 cache section of 32MB,
where the section contains two segments of 16MB each. Every
die uses the I/ODie to connect other dies throughAMD Infin-
ity Fabric. Accessing data that reside at a single die is more
efficient than moving data between different dies [3]. That is
why we expect that the optimal number of MPDATA teams
refers to the total number of CCDs. The test server is expected
to achieve the best performance for 16 MPDATAwork teams
mapped on 2� 8 CCDs. As a result, every MPDATA work
team will exploit 8 cores with 32MB of L3 cache. The idea of
adaptation of the MPDATA code to a platform with two
RomeCPUs is illustrated in Fig. 2.

Remark 1. The maximum number of NUMA domains is
equal to the amount of CCXs. At the same time, we select
the optimal number of MPDATA teams following the
amount of core complex dies. The reason is to minimize
the data movements between dies performed through the
interconnect. This choice is justified by performance
experiments described in Section 7.

The overall performance depends on how the MPDATA
domain is partitioned, and then the sub-domains are
mapped on CCDs (work teams). The data layouts for all
MPDATA arrays allow transfers of contiguous memory
areas along the first dimension only [35]. It is the reason for
avoiding 2D and 3D variants of partitioning.

The MPDATA domain of sizem� n� l is evenly decom-
posed into P sub-domains of size m

P � n� l, where P corre-
sponds to the number of CCDs (Fig. 1a). Since data
transfers take place only between borders of neighbor
MPDATA sub-domains [38], the adjacent sub-domains are
mapped onto CCDs that are closely connected with each
other. This strategy reduces the communication paths
between work teams [4] by selecting the appropriate pol-
icy for the OpenMP thread affinity interface.

5.2 Adjusting MPDATA Code to Cache Hierarchy

As shown in Fig. 1b, a single MPDATA sub-domain is par-
titioned into blocks following the (3+1)D decomposition.

Thus, the critical point is selecting the size of MPDATA
blocks to keep all necessary data in the cache hierarchy cor-
responding to a given work team.

In contrast to Intel processors, the second generation of
EPYC CPUs provides a large L3 cache. The top-of-the-line
AMD Rome 7742 CPU contains 64 cores with 256 MB of L3
(4 MB of L3 per core), while its Intel Xeon counterpart – Intel
Xeon Platinum 8280 – has 28 cores with 38.5 MB of L3 (1.37
MB of L3 per core). The large capacity of the L3 cache in
Rome processors supports larger MPDATA blocks com-
pared with Intel CPUs.

However, since every block is partitioned into a set of
sub-blocks processed by cores of a given work team, the
512KB volume of the L2 cache per Rome core limits the size
of a sub-block to keep in the L2 cache all data required for
every MPDATA package. For this reason, the final size of
MPDATA blocks has to be reduced to allow residing data in
L2 for a sequence of MPDATA kernels processed within
each package (Fig. 2). As a result, the relatively small size of
L2 (512KB) strongly bounds the size of blocks and depletes
the advantage of large L3.

The MPDATA package P5 features one of the highest
demands for the L2 cache. So the optimal size of sub-blocks
can be successfully determined based on the constraints of
this package. Table 2 includes the examples of the L2 cache
requirements for all MPDATA packages, in correlation to
the L3 cache demand for MPDATA blocks of various size.
As follows from the last column of this table, the smallest
size of 1� 256� 128 gives the best performance. This con-
clusion is supported by Fig. 3, which illustrates the impact
of increasing the block size on the execution time of the ver-
sionD of the MPDATA code.

The three parameters mB, nB, and lB define the size of
MPDATA blocks, with sub-blocks of size mB � nB

CN � lB.
Considering constraints of the (3+1)D decomposition [4],
the best configuration is fixed as nB ¼ n, lB ¼ l assuming

Fig. 2. Adaptation of MPDATA code for to dual-socket systems with 64-core AMD’s Rome EPYC CPUs.

TABLE 2
Requirements for Volume of L2 Cache for the MPDATA
Packages versus Size of the LLC Domain Assigned to a

Single Work Team, for Various Block Size (l ¼ 128)

The last column shows the performance loss against the smallest block size.

SZUSTAK ET AL.: ARCHITECTURAL ADAPTATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR CFD APPLICATION ON AMD EPYC... 2857

that the L2 and L3 cache capacity is large enough to keep all
input and output data for a given size mB. Otherwise, we
reduce the block size iteratively by nB ¼ n

q , with q ¼
2; 3; 4; . . . ; , until the block size is small enough to satisfy
the cache capacity restrictions. Algorithm 1 summarizes
the procedure for determining the optimal sizes of the
MPDATA block and sub-blocks. Here we assume that l 2
½64; 128�, as these values are typical for numerical simulation
in weather prediction applications.

Algorithm 1. Determining the Optimal Size nB�mB�
lB of MPDATA Block

mB ¼ 1
nB ¼ n
lB ¼ l
DnB ¼ nB

CN

q ¼ 1

Phase 1 - determining values of DnB and nB

while P5 in L2ðmB;DnB; lBÞ � L2S and
allPackages in L3ðmB;nB; lBÞ � L3ST do

q ¼ q þ 1
nB ¼ n

q

DnB ¼ nB
CN

end while
nB ¼ nP

q�1

DnB ¼ nB
CN

Phase 2 - determining value ofmB

while P5 in L2ðmB;DnB; lBÞ � L2S and
allPackages in L3ðmB;nB; lBÞ � L3ST do

mB ¼ mBþ 1
end while
mB ¼ mB� 1

6 METHODOLOGY OF EVALUATION

The four versions of the MPDATA code are considered in
our benchmark: (A) basic, non-optimized implementation;
(B) code with the (3+1)D decomposition of MPDATA;
(C) version B with partitioning cores into work teams;
(D) version C with the data-flow synchronization. Addition-
ally, every MPDATA version is run with enabled and dis-
abled vectorization to evaluate the influence of vector units
for performance and energy. The AMD Optimizing C/C++
Compiler (AOCC) v2.3 is used with the optimization flags

-O3”, -mprefer-vector-width=256”, and -march=-

znver2” for enabling high-level optimizations towards
AMD EPYC 7002-series.

The hardware-based technique [12] is used to measure
the energy and power consumed by the tested platform. We
employ the Yokogawa WT310 digital power meter [13] to
obtain maximally accurate and reliable energy/power
measurements (100k samples per second with measurement
accuracy kept at the level of 0.1 percent). The power meter
passes the power to the server under the load and measures
the energy and power in real-time. Yokogawa WT310 is
equipped with the serial USB interface and YokoTool com-
mand-line tool [40] that allow collecting the total power and
energy without any noticeable influence on measurements.

There are three types of measurements: execution time
(seconds), total energy consumption (Joules), and average
power (Watts). Every type of measurement is carried out
independently: one run for measuring the execution time,
and the other run for collecting the power and energy con-
sumption measurements. Each type of measurement is
repeated at least 15 times, and the median values are
selected to obtain statistically sound results. The server is
located in an air-conditioned server room, providing stable
temperature. As a result, the relative standard deviation
(RSD) does not exceed 0.5 percent for all measurements.

7 RESULTS OF EXPERIMENTS

7.1 Effect of Using Various Numbers of NUMA
Domains

This subsection contains results of investigating the impact of
using various numbers of NUMA domains on the MPDATA
performance. Results for two versions ofMPDATAare shown
in Table 3: the basic versionA and most optimized versionD
corresponding to selecting the number ofwork teams equal to
16 as the total number of CCDs in the server (see Section 7.2).
All the possible BIOS settings are being examined: NPS1,
NPS2, NPS4, and with L3 segments exposed as NUMA
domains. Following [5], we turn off the NUMA balancing
option for operation system tuning to avoid undesired perfor-
mance effects.

The analysis of Table 3 shows that theNPS4modegives the
shortest execution times for both versions. For the basic code,

Fig. 3. Execution time for version D of MPDATA with domain of size
1024� 512� 128 and different value mB for blocks of size mB�
256� 128.

TABLE 3
Execution Time [s] for Versions A and D of MPDATA for
Different Numbers of NUMA Domains Achieved for the
Domain of Size 2048�1024�128 and 10000 Time Steps

(With Enabled Vectorization)

BIOS setting NPS1 NPS2 NPS4 L3 as NUMA

NUMA domains 2x1 2x2 2x4 2x16

1024 � 512 � 128

Version A 2042.4 1982.9 1903.7 1916.1

Version D 194.4 193.3 193.2 194.5

2048 � 1024 � 128

Version A 8245.9 7984.8 7631.7 7781.2

Version D 740.5 739.2 737.2 741.5

2858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

NPS4 allows reducing the execution time by about 7.5 per-
cent. This advantage is practically negligible for the versionD
(less than 1 percent). The analogous conclusion can be made
for other problem sizes. Thus, the NPS4 mode allows achiev-
ing the highest performance. At the same time, it is of consid-
erable interest to study the behavior of the different versions
of code for othermodes, especiallyNPS1.

7.2 Correlation of Performance Optimizations and
Energy Consumption for Different MPDATA
Versions

The benchmarks outlined in this subsection allow the perfor-
mance and energy/power comparison for four MPDATA
code versions. The primary assumption of the tests is to reach
the highest possible performance by utilizing all cores and
vector units, as well as setting the maximum CPU clock fre-
quency. Table 4 shows results obtained in the NPS4 mode for
the double precision format, 10000 time steps, with two differ-
ent domains: 2048� 1024� 128 and 1024� 512� 128. Apart
from the execution time, total energy consumption, and aver-
age power, this table presents the speedup against the basic
code A, the sustained performance (Gflop/s), and the per-
centage of the peak performance, as well as the total energy
gain against the basic code.

We also monitor the power required by the platform dur-
ing the execution of each MPDATA version. Fig. 4 shows an
example of power traces for all MPDATA versions, corre-
sponding to the domain of size 1024� 512� 128, 1000 time
steps, and enabled AVX2 (NPS4 mode). As shown in Fig. 4,
the power consumed by the server is mostly kept at the
same level while executing a given MPDATA version. It is
the result of a constant computational intensity of MPDATA
time steps. At the same time, different MPDATA versions
correspond to various levels of power.

Fig. 5 illustrates performance and energy gains for vari-
ous MPDATA optimizations with two problem sizes. We
show the advantages of a given MPDATA version over the
previous one. For example, the version C with four work
teams (C-4T) reduces the execution time 4.10 times against
the version B for the domain of size 2048� 1024� 128.

The transformation of the code from the version A into B
employs the (3+1)D decomposition for alleviating the mem-
ory and communication constraints by increasing the data
locality and cache reusing [4]. For NPS1, this optimization
allows reducing the execution time in the range from 1.92
times (for the smaller domain) to 3.01 times (for the larger
one), in comparison with the version A. The energy con-
sumption decreases slightly more since the version B not
only reduces the execution time but also saves power by
about 60W. This difference is because the basic version gen-
erates a considerably higher main memory traffic.

The (3+1)D decomposition moves the bulk of data traffic
from the main memory to the cache, improving both cache
reusing and the data locality. At the same time, this optimiza-
tion results in intensive intra- and inter-cache communica-
tions within the cache hierarchy involving different NUMA
domains [35]. As a result, increasing the number of NUMA
domains almost annihilates the advantages of using the ver-
sion B in the NPS4 mode since now the performance and
energy gains become equal only to 1.01–1.08 and 1.17–1.21,
respectively.

A remedy for this issue is partitioning cores into indepen-
dent work teams. This optimization included in the version C
is responsible for reducing the overhead of inter- and intra-
CPU data traffic within the cache hierarchy of ccNUMA
systems. In the first stage of testing this version, we reveal the
effect of using two work teams for two Rome CPUs to

TABLE 4
Performance and Energy/Power Results Achieved for Different MPDATA Versions,

10000 Time Steps, and Two Sizes of MPDATA Domain

The server is configured with NPS4 mode exposing 2x4 NUMA domains.

Fig. 4. Power traces for MPDATA versions with domain of size 1024�
512� 128 in NPS4 mode (every sample is averaged over 1s interval).

SZUSTAK ET AL.: ARCHITECTURAL ADAPTATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR CFD APPLICATION ON AMD EPYC... 2859

alleviate the inter-CPU data traffic. In the NPS4 mode, for the
larger MPDATA domain, the version Cwith two work teams
(depicted as C-2T) performs computation 1.66 times faster
than the pure (3+1)D decomposition (version B). The advan-
tage is a bit smaller for the smaller domain (1.54 times). The
energy consumption is reduced aswell, with the gain at a sim-
ilar level as performance.

Then we increase the number of work teams inside pro-
cessors. Results presented in Table 4 show the advantage of
increasing the number of work teams – up to 16 work teams
since there are neither performance nor energy gains when
using more work teams. Introducing work teams inside
CPUs reduces the intra-CPU data traffic and allows using
available cores more efficiently. In the NPS4 mode, the con-
figuration with 16 work teams gives the highest acceleration
of computations (up to 7.76 times) and reduction of the
energy consumption (up to 6.50 times), as compared to the
version B. At the same time, the power required by the
server increases with the number of work teams (Table 4).
More intensive utilization of cores results in higher power
requirements for the server but allows us to execute the
MPDATA kernels faster. Accordingly, the energy consump-
tion is reduced with smaller profits than those for the execu-
tion time. In the NPS1 mode, the performance and energy
gains obtained for the version C are considerably lower. In
fact, using 16 work teams permits speeds up computations
4.60 times for the smaller MPDATA domain and 3.23 times
for the larger domain.

The data flow synchronization implemented in the ver-
sionD increases the performance up to 26 percent and saves
up to 22 percent of energy compared to the version C-16T
configured with the optimal number of work teams. The
gains for the NPS4 mode are more significant than for NPS1.

Thus, the combination of all optimization steps radically
improves performance and energy consumption. In the
NPS4 mode, these steps achieve the performance gain from
9.85 to 10.38 times and energy savings from 9.18 to 9.43

times against the basic code. Another important conclusion
is that despite the differences in the behavior of the optimi-
zation steps for different modes, their combination leads to
practically the same performance and energy consumption
results for all modes.

7.3 Impact of SIMD Processing and CPU Frequency
Scaling on Performance and Energy
Consumption

All MPDATA versions allow us to automatically implement
the vectorization in a portable way across different architec-
tures and various compilers. The optimization flags -O3

and -march=znver2 offered by the AOCC compiler sup-
port the full use of vector units for Rome CPUs. The
OpenMP SIMD directives together with the special hints
and keywords are used to make the vectorization more effi-
cient. In our tests, the clock CPU frequency is equal to 2.38
GHz and 3.2 GHz for all MPDATA versions with enabled
and disabled vectorization, respectively. For all versions
with enabled vectorization, the average power is only
slightly higher (up to 20W) compared to the scalar code.

We examine the same three performance-energy met-
rics as before. Table 5 presents results measured for the
version D with different problem sizes. This version
offers the highest benefits of vectorization for all sizes.
The highest efficiency of vectorization is achieved for the
domain of size 1024� 512� 128 when when the perfor-
mance and energy gains are equal to respectively 1.71
and 1.66 times. In contrast, enabling the AVX extension
in the basic version A results neither in performance nor
energy gains. This effect happens because the perfor-
mance of the basic code is strongly limited by the main
memory bandwidth [4].

Our experiments are completed by exploring CPU fre-
quency scaling as a method to optimize the energy efficiency
of MPDATA. We use the ACPI CPUfreq framework [41] to
set three levels of clock frequency, including 1.5 GHz,

Fig. 5. Impact of optimization steps on performance and energy gains for two sizes of MPDATA domain using NPS4 and NPS1 modes.

2860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

2.0 GHz, and 3.2 GHz for the basic version of code, and
1.5 GHz, 2.0 GHz, and 2.38 GHz for the versionD.

The version A features practically constant execution
time for all frequencies. While frequency scaling does not
affect performance, the execution of this version with the
lowest clock frequency permits a maximum reduction in
the energy. The average power is reduced by 175W to 432W
while decreasing the clock speed from 3.2 GHz to 1.5 GHz,
with negligible performance losses not exceeding 1,5 per-
cent. As a result, the total energy consumption is reduced
by 1.38 times compared to the highest clock speed. For the
version D, the minimum energy consumption is achieved
for 2.0 GHz. It allows reducing the energy on around 12
percent at the cost of increasing the execution time on about
4.5 percent.

8 PERFORMANCE MODEL

The performance of all MPDATA versions is limited [42] by
the bandwidth of the memory hierarchy which includes the
main memory and the cache hierarchy with L3 as LLC. So it
is of significant interest to establish a model considering the
influence of the memory traffic on the performance.

We use the Roofline model [43]. It is one of the common
methods of determining performance bottlenecks of com-
pute- and memory-bound applications. The Roofline sets an
upper bound on the performance of a kernel depending on
the kernel’s operational intensity. Particularly, the attain-
able performance AP of a kernel is expressed as

AP ¼ minðRpeak; I �BmaxÞ; (2)

where Rpeak is the peak performance, Bmax is the peak mem-
ory bandwidth, while operational intensity I denotes the
number of operations per byte of the memory traffic.

Assessing the quality of performed optimizations needs
to consider the data movements for the MPADTA kernels.
Each MPDATA team executes a sequence of MPDATA
blocks with a size suitable for the cache hierarchy. Inside
every block, the threads of each MPDATA team perform 17
kernels. Executing these kernels is further grouped into 5
packages P1–P5 (see Section 4.2). The first package (P1) con-
sists of the first four MPDATA kernels and requires to load
data from the main memory only. The rest of the packages
(P2–P5) operate on (i) the data loaded to the L3 cache by P1
and (ii) intermediate results of prior kernels that all should
be located in L3.

For example, let us analyze the execution of a domain of
size 1024� 512� 128 with the optimal block size of 1�

256� 128. Each of the 16 teams operates on sub-domains of
size 1024

16 � 512� 128 and performs a sequence of 128 blocks.
The first package requires to transfer five portions of

input data of size 1� ðlhþ 256þ rhÞ � 128, where the
parameters lh and rh correspond to the properly defined
ghost regions (see [21]). Assuming the double precision for-
mat, every team that executes the package P1 should trans-
fer about 0.00133 GB of data from the main memory. As a
result, the total amount Q of data transferred by all 16 teams
that perform all 128 blocks is about 2.726 GB. At the same
time, computing a single output element within the package
P1 requires to perform 33 operations including 8 add, 4 sub,
10 mul, 5 max, 5 min, and one div operations, which yield
totally about 0.001098 Gflop for a single block. The total
number W of operations is about 2.2491 Gflop for all 128
blocks and all 16 teams.

To proceed further with our model, we utilize the LIKWID
Performance Tools [44] to measure the required performance
parameters of the test platform. Using the benchmark called
peakflops_avx, we fix the peak performance as 2263.34 Gflop/s
for AVX SIMD and non-FMA type of instructions, which is
very close to the theoretical peak of 2304 Gflop/s. Through
running the load_avx benchmark in the NPS4mode, the maxi-
mumDRAMbandwidth is determined as about 322 GB/s.

Remark 2. The value of 322 GB/s should be interpreted as
the upper bound for the memory bandwidth. It corre-
sponds to rather large sizes of transferred data packages. In
applications dealing with smaller packages, the memory
bandwidth is lower. For example, the classic STREAMmea-
surement from LIKWID yields only 220 GB/s. This value
corresponds to the stream_avx benchmark. It is expected to
achieve about 290 GB/s for the stream_mem_avx bench-
mark, which uses non-temporal stores (this benchmark
failed to run on our platform).

Following the Roofline model, the operational intensity
I ¼ W

Q for the package P1 is I ¼ 0:82 flop
byte . With the peak data

bandwidth Bmax ¼ 322 GB/s and peak performance Rpeak

¼ 2263:34 Gflop/s, the attainable performance for the pack-
age P1 becomes AP ¼ 288:8 Gflop/s.

We repeat our estimation of the operational intensity for
the other packages P2–P5 that operate on the data loaded
from the L3 cache. Following Eq. (2), again it is necessary to
measure the data transfer bandwidth, this time assuming
loading data from L3. For this purpose, we use the load_avx
benchmark from LIKWID, which returns the sustained band-
width in the range from 1000 to 5000GB/s achieved for differ-
ent data package sizes. To provide a fair assessment, we
determine the sustained bandwidth aggregated for all threads
by separating input data transfers corresponded to a single
MPDATAarray processed by the package P4,where the block
size is selected following Section 5.2. In this way, the sought
value of the bandwidth is determined as 1655 GB/s. This
allows us to estimate the attainable performance AP for each
kernel.

Remark 3. To simplify the validation of the model accu-
racy, we run the MPDATA code without the asynchro-
nous execution of threads within packages, which is
offered by the version D. This simplification corresponds
to utilizing the barrier synchronization. Disabling the

TABLE 5
Performance-Energy Comparison of Scalar (Non-AVX) and

Vectorized (AVX) Codes for Version D of MPDATA Obtained for
Double Precision Format and 10000 Time Steps,

With Different Domain Sizes

SZUSTAK ET AL.: ARCHITECTURAL ADAPTATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR CFD APPLICATION ON AMD EPYC... 2861

data flow synchronization allows measuring the sus-
tained performance SP individually for every package by
dividing the amount of performed operations by the exe-
cution time T .

The summary of our study is presented in Table 6, where
q denotes the ratio of the measured performance SP to the
attainable performance AP . The calculated values of q
reveal the model accuracy in the range from 66.4 percent
(package P3) to 91.5 percent (package P1). This level of
agreement between the measured and predicted perfor-
mance is quite good, taking into account the runtime and
architectural overheads, including thread divergence within
work teams.

Thus, the performance model established in this section
confirms the memory-bound nature of the MPDATA appli-
cation. The performance bottleneck is noticeable for the first
package, where the DRAM bandwidth strongly limits the
sustained performance. The execution of this package takes
around v ¼ 43% of the total execution time, where the value
of v is estimated very roughly based on the values shown in
the last but one row of Table 6. This estimation does not con-
sider, e.g., overlapping in executing the packages using the
data flow synchronization. For the rest of the packages, the
proposed optimizations remove the constraints imposed by
the DRAM memory bandwidth. In this case, the perfor-
mance is limited by the bandwidth of the cache hierarchy
with L3 as the last-level cache. This bandwidth is around
5.14 times higher than the DRAM one. Consequently, the
sustained performance for the packages P2-P5 is increased
in the range from 3.8 times for P2 to 4.7 times for P3, com-
pared with the package P1.

The resulting Roofline graph is shown in Fig. 6. It illus-
trates increasing the operational intensity I by grouping
kernels into packages due to loop fusion and loop tiling. For
example, while the values of I for the original kernels K1-
K4 are in the range 0.14–0.31, the operational intensity for
the resulting package P1 becomes equal to 0.82. For the
other packages, the main reason for the improved perfor-
mance becomes the efficient utilization of the cache hierar-
chy. In Fig. 6, it is exemplified by the displacement of the
points which correspond to the kernels grouped into the
packages P2–P5 from the line corresponding to the DRAM

bandwidth of 322 GB/s to the line corresponding to the L3
cache bandwidth of 1655 GB/s.

9 COMPARISON TO INTEL CPUS

Our research is completed by comparing the efficiency of
the platform equipped with AMD Rome CPUs and those
based on Intel Xeon Scalable processors of two generations.
Intel-based systems are dual-socket servers with either Sky-
lake SP (SKL-SP) or Cascade Lake-SP (CSL-SP) Intel Xeon
CPUs, each with 28 cores. The first platform includes two
Intel Xeon Platinum 8180 CPUs [45] and 192GB of DDR4
memory operating at 2666 MHz. The second one contains
192GB of DDR4-2933 and is powered by one of the top-of-
the-line CPUs provided by the second generation of Intel
Xeon Scalable architecture – Platinum 8280 [46]. While per-
formance results are measured for all servers, energy con-
sumption measurements are available only for the platform
with Rome and SKL-SP processors.

The servers with SKL-SP, CSL-SP, and Rome processors
offer quite similar theoretical peak performance Rpeak of
respectively 2060, 2150, and 2304 Gflop/s. These values
assume SIMD vectorization usage with non-FMA instruc-
tions and turbo SIMD frequency (2.3 GHz, 2.4 GHz, and
2.25 GHz for SKL-SP, CSL-SP, and 7742 processors,

TABLE 6
DRAM:322 L3:1655 Roofline Performance Model for Domain of 1024�512�128 and Block Size 1�256�128

Package P1 P2 P3 P4 P5

kernels 4 1 2 6 4

Data location Memory Cache hierarchy with L3 as LLC

W ½Gflop� 2.249 1.961 3.938 3.787 3.557

Q ½GB� 2.726 2.713 3.802 4.869 4.831

I ½flopbyte� 0.82 0.72 1.04 0.78 0.74

AP ½Gflop=s� 265.6 1199.9 1714.1 1287.2 1218.3

SP ½Gflop=s� 243.1 916.6 1137.4 939.3 991.9

q ½%� 91.5 76.4 66.4 73.0 81.4

Exec. time T ½s� 103.02 22.58 36.21 41.80 35.96

v ½%� 43 9.4 15.1 17.4 15.01

Fig. 6. The resulting Roofline graph (only some of 17 MPDATA kernels
are shown).

2862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

respectively). To address the possible readers’ surprise
because of comparable values of Rpeak for the 64-core Rome
CPU and 28-core CSL-SP (or SKL-SP) processor, it should
be noted that this advantage in the core count is counterbal-
anced by the double width of the Intel AVX-512 SIMD
extension versus AMD AVX2. What is also essential, both
AMD and Intel processors used by the test platforms have
also quite similar thermal envelope (TDP) - 205W in the
case of Intel CPUs versus 225W for Rome 7742. There are
available other Cascade Lake-SP Intel Xeon CPUs [46] with
a higher core count (from 32 to even 56 cores), but they have
higher TDP as well - from 250W to even 400W.

All benchmarks on Intel-based servers are compiled
using Intel Parallel Studio XE 2019 with the optimization
flag -O3 and properly chosen compiler arguments for AVX-
512. To optimize the performance-energy trade-off for a
given platform, we select the optimal clock speed individu-
ally for every MPDATA version to minimize energy con-
sumption with negligible performance losses.

The comparison between Intel- and AMD-based systems
is presented in Table 7. It shows the performance and
energy/power measurements obtained for the versions A
and D of MPDATA, as well as the sustained performance
(Gflop/s) and the percentage of peak performance. This
table also shows the energy efficiency expressed as the ratio
of the total number of floating-point operations to energy
consumption. All energy/power measurements are deliv-
ered by Yokogawa WT310, monitoring the entire platform.

For all tested platforms, the basic version A of MPDATA
returns the best performance and energy results when using
the lowest CPU frequency. The AMD-based server executes

MPDATA 1.33–1.38 times faster than the Intel-based plat-
forms. As a result, despite requiring 76.5W more power, the
AMD-based system consumes about 1.14 less energy.

In contrast, when running the most optimized version D,
the highest CPU frequency is set for all tested platforms to
achieve the best performance. Again the AMD-based server
outperforms the Intel-based ones, executing computations
1.23–1.36 times faster. Simultaneously, the energy consump-
tion is about 1.12 times less than provided by the server
with Skylake SP CPUs despite requiring 76Wmore.

The efficient porting of MPDATA to the tested platforms
requires generating an optimal configuration for every opti-
mization, based on parameters characterizing a given server.
Table 8 shows the optimal configurations of the version D of
MPDATA for each platform. Because of similar architectures
of the Intel-based servers used in this study, the adaptation
process for the MPDATA code returns the same configura-
tion. The optimal number of MPDATA work teams in this
case – 4 teams – is twice the number of available NUMA
domains because of two memory controllers per CPU. As a
result, every team includes 14 cores and effectively 14 MB of
L3 (1 MB per core). This setup corresponds to the MPDATA
block with the optimal size of 2x512x128. In this case, as
shown in Table 8, all MPDATA packages consume all avail-
able L3memory. At the same time, each package utilizes only
up to half of the L2 cache capacity. In consequence, the size of
L3 becomes the critical constraint in the calibration of the
MPDATA code for the Intel-based servers.

For the platform with Rome CPUs, the MPDATA code
requires 16 MPDATA teams to get the best performance
and energy efficiency. This setup corresponds to 8 cores per

TABLE 7
Performance and Energy Comparison Between Intel-Based and AMD-Based Platforms for MPDATA Domains of Size

1024� 512� 128 and 2048� 1024� 128, Double Precision Format, and 10000 Time Steps

TABLE 8
Optimal Configuration of Version D of MPDATA for Different Platforms With

Domains of Size 1024� 512� 128 and 2048� 1024� 128

Computing
platform

Teams Cores per team Block size L2 per core [MB] L3 per team [MB]

Available cache Max demanded
cache (package P5)

Effective
available cache

Total demanded
cache

(all packages)

Intel based platforms 4 14 2 � 512 � 128 1 0.44 14 14.5

AMD based platforms 16 8 1 � 256 � 128 0.5 0.47 32.0 16

SZUSTAK ET AL.: ARCHITECTURAL ADAPTATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR CFD APPLICATION ON AMD EPYC... 2863

each team that shares 32 MB of L3 cache (4 MB per core). As
shown in Table 8, the optimal size of the MPDATA block –
1x256x128 – consumes only about half of the L3 cache
capacity when performing all MPDATA packages. Simulta-
neously, the package with the highest L2 demand (P5) uti-
lizes almost all L2 cache capacity. Thus, in contrast to the
Intel-based platforms, the available size of L3 per team does
not constrain the MPDATA adaptation.

As shown in Section 7 (Table 4), for the AMD-based
server, the configuration with only 4 MPDATA teams - the
best one for the systems with Intel CPUs - results in 88–140
percent longer execution time and 62–103 percent higher
energy consumption compared to the optimal setup with 16
MPDATA teams. Additional degradation of up to 15 per-
cent for the performance and 12 percent for energy con-
sumption correspond to adjusting the block size based
solely on the L3 capacity.

10 CONCLUSION

The second generation of AMD EPYC CPUs delivers large
core counts, faster memory, and high-performance fabric.
These advantages can be successfully used in the race to
Exascale. However, the the novel architecture’s complexity
makes it challenging to adapt demanding scientific codes –
like stencil ones – to platforms with AMD Rome CPUs.
Moreover, the differences between Intel Xeon and AMD
Rome architectures thoroughly affect optimizing parallel
codes to achieve sustained high performance of real-life sci-
entific applications.

This paper tackles this challenge and presents the archi-
tectural adaptation of a real-world CFD application to influ-
ential features of Rome processors. In the background, we
place the parametric optimizations of the MPDATA appli-
cation for Intel processors. Extending these optimizations
allows us to develop a portable methodology for paralleliz-
ing the memory-bound MPDATA code. The goal is to opti-
mize this code for server platforms powered by both Intel
and AMD processors of the last generations.

This work explores how the proposed methodology
addresses performance-energy trade-offs. In particular, we
focus on the impact of the set of optimizations proposed in
[4] on the MPDATA performance and energy efficiency. For
this aim, we study the energy and power consumption for a
dual-socket ccNUMA platform with AMD Rome 7742 CPUs
(128 cores in total), using the accurate power meter. This
study proves that our methodology can reduce both execu-
tion time and energy consumption of MPDATA radically –
in the range of around 9.8–10.4 and 9.2-9.4 times for perfor-
mance and energy consumption, respectively. It is also
shown that despite significant differences in the behavior of
particular optimizations for various NPS modes of configur-
ing the Rome architecture, the combination of these optimi-
zations leads to practically the same performance and
energy consumption for all modes. The achieved perfor-
mance results are verified by the Roofline-based model,
which connects the MPDATA performance with the main
memory and cache bandwidth.

Finally, the paper provides the performance-energy com-
parison of the platform with two AMD Rome 7742 CPUs
against two servers with Intel Xeon Scalable processors of

different generations – Intel Xeon Platinum 8180 and 8280.
The dual-socket platform with Rome processors outperforms
both Intel-based systems in performance and energy con-
sumption, allowing us to execute computations 1.23–1.36
times faster with up 1.12 times fewer energy costs. Evenwith-
out appealing to prices, these results are a serious reason to
confirm Rome’s competitiveness against Intel Xeon CPUs in
scientific applications. Given the highly possible superiority
of AMD Rome processors in price [14], [47], their actual level
of competitiveness appears to be even higher.

Determining an optimal configuration of the MPDATA
code is vital to ensure the performance portability on differ-
ent architectures. The proposed adaptation methodology [4]
resulted in developing the customizable MPDATA code
that can follow various hardware parameters. The extension
of this parametric adaptation on the novel EPYC architec-
ture requires careful consideration of two aspects: partition-
ing cores into work teams and cache hierarchy features. The
first one reflects splitting the Rome architecture into multi-
ple dies, each communicating with other dies through Infin-
ity Fabric links. The second aspect takes into account the
relationship between the sizes of L3 and L2 caches.

In consequence, even for the memory-bound MPDATA
application, the ratio r of sustained performance to peak
performance for the analyzed AMD Rome processor
(r � 36� 37%) is better than in the case of Intel Platinum
CPUs (r � 30� 31:7 %). This result is the effect of determin-
ing the optimal MPDATA configuration adjusted to the
AMD Rome architecture features instead of using a solution
chosen for Intel CPUs. Selecting the optimal configuration
improves performance up to more than 2.5 times and
energy consumption up to 2.15 times.

ACKNOWLEDGMENTS

The authors would like to thank HPE Poland and Poznan
Supercomputing and Networking Center (Poland) for
granting access to HPC platforms. This work was supported
in part by the National Science Center Poland under Grant
UMO-2017/26/D/ST6/00687 and in part by the Polish Min-
ister of Science and Higher Education though Regional Ini-
tiative of Excellence Project in 2019–2022 under Grant 020/
RID/2018/19.

REFERENCES

[1] HPC in 2020: Compute engine diversity gets real, Jan. 2020.
[Online]. Available: https://www.nextplatform.com/2020/01/
13/hpc-in-2020-compute-engine-diversity-gets-real/

[2] Europeanweather center breaks tradition with upcoming supercom-
puter, Jan. 2020. [Online]. Available: https://www.nextplatform.
com/2020/01/14/

[3] AMD infinity architecture, TIRIAS White Paper, Aug. 2019.
[Online]. Available: https://www.amd.com/system/files/docu-
ments/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf

[4] L. Szustak and P. Bratek, “Performance portable parallel program-
ming of heterogeneous stencils across shared-memory platforms
with modern Intel processors,” Int. J. High Perform. Comput. Appl.,
vol. 33, no. 3, pp. 507–526, 2019.

[5] A.Kashyap, “High performance computing: Tuning guide for AMD
EPYC 7002 series processors,” Jan. 2020. [Online]. Available:
https://developer.amd.com/wp-content/resources/56827–1-0.pdf

[6] J. Munoz, C. Kitchen, and M. Guest, “Performance analysis of AMD
EPYC Rome processors,” Dec. 2019. [Online]. Available: https://
www.scd.stfc.ac.uk/SiteAssets/Pages/CIUK-2019-Presentations/
Martyn_Guest.pdf

2864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/
https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/
https://www.nextplatform.com/2020/01/14/
https://www.nextplatform.com/2020/01/14/
https://www.amd.com/system/files/documents/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf
https://www.amd.com/system/files/documents/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf
https://developer.amd.com/wp-content/resources/56827--1-0.pdf
https://www.scd.stfc.ac.uk/SiteAssets/Pages/CIUK-2019-Presentations/Martyn_Guest.pdf
https://www.scd.stfc.ac.uk/SiteAssets/Pages/CIUK-2019-Presentations/Martyn_Guest.pdf
https://www.scd.stfc.ac.uk/SiteAssets/Pages/CIUK-2019-Presentations/Martyn_Guest.pdf

[7] AMD EPYC 7002 series processors weather modeling with WRF,
2020. [Online]. Available: https://www.amd.com/system/files/
documents/EPYC-7002-Weather-Modeling-with-WRF.pdf

[8] AMD EPYC 7002 series processors and GROMACS molecular
dynamic simulation, Aug. 2019. [Online]. Available: https://
www.amd.com/system/files/documents/EPYC-7002-Gromacs-
Molecular-Dynamics-Simulation.pdf

[9] P. Smolarkiewicz, “Multidimensional positive definite advection
transport algorithm: An overview,” Int. J. Numer. Methods Fluids,
vol. 50, no. 10, pp. 1123–1144, 2006.

[10] P. Smolarkiewicz and P. Charbonneau, “EULAG, a computational
model for multiscale flows: An MHD extension,” J. Comput. Phys.,
vol. 236, pp. 608–623, 2013.

[11] L. Szustak, R. Wyrzykowski, T. Olas, and V. Mele, “Correlation of
performance optimizations and energy consumption for stencil-
based application on Intel Xeon scalable processors,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 11, pp. 2582–2593, Nov. 2020.

[12] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A
comparative study of methods for measurement of energy of
computing,” Energies, vol. 12, no. 11, 2019, Art. no. 2204.

[13] WT300 series digital power meter analyzer, 2018. [Online]. Avail-
able: https://tmi.yokogawa.com

[14] AMD EPYC vs. Intel Xeon Cascadelake with Facebook’s Rocksdb
database, Oct. 2019. [Online]. Available: https://www.phoronix.
com/scan.php?page=article&item=intel-amd-rocksdb&num=1

[15] X. Guo and O. W. Saastad, “Best practice guide - AMD EPYC,”
Feb. 2019. [Online]. Available: https://prace-ri.eu/wp-content/
uploads/Best-Practice-Guide_AMD.pdf

[16] Clang – The C, C++ compiler. Accessed: Mar. 1, 2021. [Online].
Available: https://developer.amd.com/amd-aocc/

[17] AMD optimizing CPU libraries (AOCL),” 2020. [Online]. Avail-
able: https://developer.amd.com/amd-aocl/

[18] G. Hager and G. Wellein, Introduction to High Performance Comput-
ing for Science and Engineers. Boca Raton, FL, USA: CRC Press,
2011.

[19] K. Datta et al., “Optimization and performance modeling of stencil
computations on modern microprocessors,” SIAM Rev., vol. 51,
no. 1, pp. 129–159, 2009.

[20] T. Henretty et al.“Data layout transformation for stencil computa-
tions on short-vector SIMD architectures,” in Proc. Int. Conf. Com-
piler Construction, 2011, pp. 225–245.

[21] L. Szustak, K. Rojek, T. Olas, L. Kuczynski, K. Halbiniak, and
P. Gepner, “Adaptation of MPDATA heterogeneous stencil com-
putation to Intel Xeon Phi coprocessor,” Sci. Program., vol. 2015,
2015, Art. no. 642705.

[22] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-perfor-
mance code generation for stencil computations on GPU
architectures,” in Proc. 26th ACM Int. Conf. Supercomputing, 2012,
pp. 311–320.

[23] K. Rojek, K. Halbiniak, and L. Kuczynski, “CFD code adaptation
to the FPGA architecture,” Int. J. High Perform. Comput. Appl., vol.
35, no. 1, pp. 33–46, 2021.

[24] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based
optimization of EULAG kernel on Intel Xeon Phi through load
imbalancing,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 3,
pp. 787–797, Mar. 2017.

[25] X. Zhou et al.“Hierarchical overlapped tiling,” in Proc. 10th Int.
Symp. Code Gener. Optim., 2012, pp. 207–218.

[26] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil
computations to maximize parallelism,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Analysis, 2012, pp. 1–11.

[27] I. Bertolacci et al., “Parameterized diamond tiling for stencil com-
putations with chapel parallel iterators,” in Proc. 29th ACM Int.
Conf. Supercomputing, 2015, pp. 197–206.

[28] T. Malas, J. Hornich, G. Hager, H. Ltaief, C. Pflaum, and D. Keyes,
“Optimization of an electromagnetics code with multicore wave-
front diamond blocking and multi-dimensional intra-tile paral-
lelization,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2016,
pp. 142–151.

[29] J. Guo, G. Bikshandi, B. B. Fraguela, and D. Padua, “Writing pro-
ductive stencil codes with overlapped tiling,” Concurrency Com-
put., Pract. Experience, vol. 21, no. 1, pp. 25–39, 2009.

[30] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach,
“High performance stencil code generation with LIFT,” in Proc.
Int. Symp. Code Gener. Optim., 2018, pp. 100–112.

[31] R. Manumachu and A. Lastovetsky, “Bi-objective optimization of
data-parallel applications on homogeneous multicore clusters for
performance and energy,” IEEE Trans. Comput., vol. 67, no. 2,
pp. 160–177, Feb. 2018.

[32] H. Anzt, “Asynchronous and multiprecision linear solvers: Scal-
able and fault-tolerant numerics for energy efficient high perfor-
mance computing,” Ph.D. dissertation, Inst. Appl. Numer. Math.,
Karlsruhe Inst. Technol., 2012.

[33] K. Eder and J. P. Gallagher, “Energy-aware software engineer-
ing,” in ICT - Energy Concepts for Energy Efficiency and Sustainabil-
ity, G. Fagas, L. Gammaitoni, J. P. Gallagher, and D. J. Paul, Eds.,
Rijeka, Croatia: IntechOpen, pp. 1–165, 2017.

[34] AMD EPYC 7002 series processors, 2020. [Online]. Available:
https://www.amd.com/en/processors/epyc-7002-series

[35] L. Szustak, K. Halbiniak, R. Wyrzykowski, and O. Jakl,
“Unleashing the performance of ccNUMA multiprocessor archi-
tectures in heterogeneous stencil computations,” J. Supercomput-
ing, vol. 75, pp. 7765–7777, 2019.

[36] J. Hennessy and D. Patterson, Computer Architecture: A Quantita-
tive Approach, 6th ed., Burlington, MA, USA: Morgan Kaufmann,
2019.

[37] B. Rosa, L. Szustak, A. Wyszogrodzki, K. Rojek, D. Wojcik, and
R. Wyrzykowski, “Adaptation of multidimensional positive defi-
nite advection transport algorithm to modern high-performance
computing platforms,” Int. J. Model. Optim., vol. 5, no. 3, pp. 171–
176, 2015.

[38] L. Szustak, “Strategy for data-flow Synchronizations in stencil
parallel computations on multi-/manycore systems,” J. Supercom-
puting, vol. 74, no. 4, pp. 1534–1546, 2018.

[39] Intel 64 and IA-32 architectures optimization reference manual,
Apr. 2018. [Online]. Available: https://software.intel.com, April
2018.

[40] Yoko tool, 2020. [Online]. Available: https://01.org/yoko-tool
[41] E. Calore, A. Gabbana, S. Schifano, and R. Tripiccione, “Software

and DVFS tuning for performance and energy-efficiency on Intel
KNL processors,” J. Low Power Electronics Appl., vol. 8, no. 2, 2018,
Art. no. 18.

[42] L. Szustak, K. Halbiniak, L. Kuczynski, J. Wrobel, and A. Kulawik,
“Porting and optimization of solidification application for CPU–
MIC hybrid platforms,” Int. J. High Perform. Comput. Appl., vol. 32,
no. 4, pp. 523–539, 2018.

[43] S. Williams, A. Watterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[44] LIKWID performance tools, Mar. 2021. [Online]. Available:
https://hpc.fau.de/research/tools/likwid/

[45] Xeon Platinum 8180 – Intel, Jul. 2017. [Online]. Available: https://
en.wikichip.org/wiki/intel/xeon_platinum/8280

[46] 2nd generation Intel� Xeon� scalable processors, 2019. [Online].
Available: https://ark.intel.com/content/www/us/en/ark/pro-
ducts/series/192283/2nd-generation-intel-xeon-scalable-
processors.html

[47] Detailed specifications of the AMD EPYC Rome CPUs, 2020.
[Online]. Available: https://www.microway.com/knowledge-
center-articles/detailed-specifications-of-the-amd-epyc-rome-
cpus/

Lukasz Szustak received the PhD degree from
the Czestochowa University of Technology in
2012 and the DSc degree in computer science in
2019. His research interests include parallel com-
puting and mapping algorithms onto parallel
architectures. His current research interests
include the development of methods for perfor-
mance portability, scheduling, and load balanc-
ing, including the adaptation of stencil-based
computations to modern HPC architectures.

SZUSTAK ET AL.: ARCHITECTURAL ADAPTATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR CFD APPLICATION ON AMD EPYC... 2865

https://www.amd.com/system/files/documents/EPYC-7002-Weather-Modeling-with-WRF.pdf
https://www.amd.com/system/files/documents/EPYC-7002-Weather-Modeling-with-WRF.pdf
https://www.amd.com/system/files/documents/EPYC-7002-Gromacs-Molecular-Dynamics-Simulation.pdf
https://www.amd.com/system/files/documents/EPYC-7002-Gromacs-Molecular-Dynamics-Simulation.pdf
https://www.amd.com/system/files/documents/EPYC-7002-Gromacs-Molecular-Dynamics-Simulation.pdf
https://tmi.yokogawa.com
https://www.phoronix.com/scan.php?page=article&item=intel-amd-rocksdb&num=1
https://www.phoronix.com/scan.php?page=article&item=intel-amd-rocksdb&num=1
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_AMD.pdf
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_AMD.pdf
https://developer.amd.com/amd-aocc/
https://developer.amd.com/amd-aocl/
https://www.amd.com/en/processors/epyc-7002-series
https://software.intel.com, April 2018.
https://software.intel.com, April 2018.
https://01.org/yoko-tool
https://hpc.fau.de/research/tools/likwid/
https://en.wikichip.org/wiki/intel/xeon_platinum/8280
https://en.wikichip.org/wiki/intel/xeon_platinum/8280
https://ark.intel.com/content/www/us/en/ark/products/series/192283/2nd-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/192283/2nd-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/192283/2nd-generation-intel-xeon-scalable-processors.html
https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-amd-epyc-rome-cpus/
https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-amd-epyc-rome-cpus/
https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-amd-epyc-rome-cpus/

Roman Wyrzykowski (Senior Member, IEEE)
received the MSc and PhD degrees in computer
science from the Kiev Polytechnic Institute in
1982 and 1986, respectively. Since 1982, he is
with the Czestochowa University of Technology,
Poland. Since 1994, he has been the chair of the
program committee of the PPAM series of inter-
national conferences on parallel processing. His
research interests include parallel and distributed
computing, mapping algorithms onto cluster, and
cloud systems.

Lukasz Kuczynski received the MSc degree in
computer science from the Czestochowa University
of Technology, in 2001 and the PhD degree in com-
puter science, the dissertation on efficient dataman-
agement in PCmeta-clusters, in 2010. His research
interests include parallel and distributed computing,
mapping algorithms onto FPGAs, and other parallel
architectures.

Tomasz Olas received the MSc degree in com-
puter science from the the Czestochowa Univer-
sity of Technology, Poland, in 1999 and the PhD
degree in computer science, the dissertation on
mapping FEM computations onto parallel and
distributed systems, in 2004. His main research
interests include parallel and distributed comput-
ing, mapping algorithms onto parallel architec-
tures, and cluster and cloud technologies.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2866 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

