
Future Generation Computer Systems 148 (2023) 623–635

C
a

b

c

d

h
S
B
t

t
t
r
a
b
p
d

p
a

(
(
e

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Profiling and optimization of Python-based social sciences
applications onHPC systems bymeans of task and data parallelism
Lukasz Szustak a,b,∗, Marcin Lawenda b, Sebastian Arming c, Gregor Bankhamer c,
hristoph Schweimer d, Robert Elsässer c

Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland
Poznan Supercomputing and Networking Center, Jana Pawła II 10, 61-139 Poznan, Poland
Paris Lodron University of Salzburg PLUS, Jakob-Haringer-Straße 2, 5020 Salzburg, Austria
Know-Center GmbH, Inffeldgasse 13/6, 8010 Graz, Austria

a r t i c l e i n f o

Article history:
Received 28 February 2023
Received in revised form 12 May 2023
Accepted 2 July 2023
Available online 5 July 2023

Keywords:
Social sciences applications
Profiling
Optimization
Task parallelism
Data parallelism
HPC
Co-design
CcNUMA

a b s t r a c t

The article presents optimization techniques for two Python-based large-scale social sciences appli-
cations: SN (Social Network) Simulator and KPM (Kernel Polynomial Method). These applications use
MPI technology to transfer data between computing processes, which in the regular implementation
leads to load imbalance and performance degradation. To avoid this effect, we propose a 2-stage
optimization. In the first step, the order of tasks is changed, and in the second step, the tasks are
divided into smaller ones for easier allocation. In addition, we focus on mitigating performance
and memory bottlenecks using modern ccNUMA systems with multiple NUMA domains. As part
of the performance analysis, the limitations of communication in data traffic between and within
the processor were revealed and resolved through appropriate data allocation. Benchmarking was
carried out, examining various environments, including vendors of traditional x86-64 and ARM-based
processors for HPC.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Conducting research on social sciences through simulations
as become a common practice in the scientific community.
ocial science applications are most often based on the Agent
ased Modeling (ABM) paradigm [1], which uses graph models
o simulate the flow of data between the entities of this analysis.

The overriding motivation for the preparation of this work is
o make better use of available resources by better understanding
heir capabilities. In particular, the analysis is based on HPC
esources where we strive for trade-offs and correlations between
pplication and hardware. Our goal is to reduce performance
ottlenecks and overcome memory limitations to improve overall
erformance. We tackle a wide variety of profiling scenarios and
eep code analysis to achieve these goals.
In the foundation of the social sciences simulations is re-

roduction of every entity, whether in the form of a person or
nother object, e.g. messages in a social network, depending on

∗ Corresponding author at: Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland.

E-mail addresses: lszustak@icis.pcz.pl (L. Szustak), lawenda@man.poznan.pl
M. Lawenda), sarming@cs.uni-salzburg.at (S. Arming), gbank@cs.sbg.ac.at
G. Bankhamer), christoph.schweimer@protonmail.com (C. Schweimer),
lsa@cs.sbg.ac.at (R. Elsässer).
ttps://doi.org/10.1016/j.future.2023.07.005
167-739X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
the type of study. It is common to strive to obtain more and more
accurate results by increasing the measurement resolution. This,
of course, involves an increase in the amount of input data, the
size of memory structures used to store them, the amount of
communication between processes, and thus the complexity of
processes and the amount of resources necessary to process them.

It should be noted that in this work we do not deal with the
correctness and effectiveness of the model of simulation of the
flow of messages through the network, but with the optimization
of the processing of this simulation through the use of techniques
related to the division and allocation of tasks and data using the
capabilities of the computing environment. Reducing the calcula-
tion time fosters obtaining results faster and reducing the energy
consumption needed to perform tasks.

The analysis and optimization in this study are based on two
applications: the SN (Social Network) Simulator and the KPM
(Kernel Polynomial Method) application. The code analysis and
optimization are performed to alleviate performance and memory
bottlenecks and improve the overall performance on modern
ccNUMA systems with multiple NUMA domains. During the anal-
ysis, we reveal some communication constraints for inter- and
intra-CPU data traffic.

This activity addresses a variety of modern parallel archi-
tectures, including typically a single computing node based on
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2023.07.005
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.07.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:lszustak@icis.pcz.pl
mailto:lawenda@man.poznan.pl
mailto:sarming@cs.uni-salzburg.at
mailto:gbank@cs.sbg.ac.at
mailto:christoph.schweimer@protonmail.com
mailto:elsa@cs.sbg.ac.at
https://doi.org/10.1016/j.future.2023.07.005
http://creativecommons.org/licenses/by/4.0/


L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

x
o
i
c

w
q
i

2

w
g
i
t
m
t
a
o
o
a
a
i
d

a
A
f
w
p
d
s

p
c
d
t
t
d
p
t

w
o
s
s
c
m
i
a

t
t
e
w
e

p
t
w
I
s
p
c
h

t
d
u
l
w
A
m

i
a
P
w
c
f
t

4

4

m

86-64 and ARM-based architectures. In contrast to the compute
riented code of SN Simulator, the KPM application is memory-
ntensive and demands a higher memory bandwidth. This appli-
ation is also parallelized using the MPI standard for Python.
The advantage of the presented approaches is their versatility,

hich allows them to be used for both analysis and subse-
uent optimization in many applications with a similar process-
ng model.

. Related works

Applications simulating the spread of messages in social net-
orks require processing large amounts of data based on complex
raph structures. In order to obtain quasi-real-time results, it
s usually necessary to implement optimization using available
echniques. A common approach is to increase performance by
eans of system trajectory optimization by specifying the ini-

ial conditions to maximize or minimize the final number of
ctive graph nodes. Solutions using efficient algorithms based
n statistical physics or heuristics to select nodes for trajectory
ptimization in cascading processes in graphs are: determining
ppropriate initial conditions to optimize the final number of
ctive nodes [2], approximation algorithm of selecting the most
nfluential nodes [3], selecting nodes in the network to quickly
etect the spread of information [4].
However, the co-design approach seems to be more generic

nd versatile in use to improve overall application performance.
lthough it has been less analyzed in such type of simulation so
ar, therefore it is difficult to provide direct references to other
orks of this kind. Presented in the paper co-design based on
erformance analysis and application optimization in two areas:
ata flow adjustments and effective use of software and hardware
olutions offered by modern multiprocessor systems.
In this elaboration, optimization was done using the data

arallelism approach, which is the most common parallel de-
omposition strategy, by which an application’s data domain is
ecomposed into as many data partitions as threads assigned to
he computation. In data-parallel model, tasks are assigned to
hreads, and each task performs similar types of operations on
ifferent data. At an abstract programming level, data-parallel
rograms consist of a loop body executing on different parts of
he input data [5].

The presented approach shall be implemented in areas where
e deal with large data structures (e.g. matrices, graphs). One
f them is the training of deep neural networks in a dynamic
tochastic batch size gradient descent approach based on con-
cious performance technology. This method assesses the pro-
essing capacity of each node by dynamically assigning a
inibatch to each node, ensuring that the update time of each

teration between nodes is essentially the same, lowering the
verage node gradient [6].
Another example where data parallelism has been studied is

he propagation of beliefs in factor graphs. Operations on po-
ential tables are parallelized by dividing them into small parts,
ach of them is processed by a separate process. For factor graphs
ith large potential tables, data parallelism has proven to be an
ffective approach to speed up belief propagation [7].
Optimization using the hardware and software co-design ap-

roach is presented in this work based on the ccNUMA architec-
ure. The NUMA (Non-Uniform Memory Access) architecture is
idely used for concurrent access in modern computer systems.

t allows programmers to create a logically consistent address
pace controlled by individual processors controlling a specific
ool of operational memory. The peculiarity is that a given pro-
essor accesses its own memory much faster than the memory
andled by other processors. An improvement in this model is
624
the addition of a hardware-based processor responsible for cache
coherency (ccNUMA), which greatly facilitates the programming
process of systems based on the NUMA architecture. However,
effective use of ccNUMA is still a challenge for developers creating
multiprocessor applications and ensuring optimal access to data.

Methodologies for increasing performance in various NUMA
configurations for modern processor architectures (AMD Rome
and Huawei Kunpeng 920) are presented in [8]. The authors
propose a multi-domain implementation for dense matrix factor-
izations and matrix inversion (DMFI) as well as hybrid task- and
loop-level parallelism. The suggested parallelism sets up multi-
threaded executions to fix the core-data linkage, taking advantage
of locality at the cost of less code modification.

The problem of designing multi-threaded applications, aware
of the limitations of the NUMA architecture by reducing data
transfer, is also the subject of other studies, specifically in re-
spect of: thread and memory pages migrations [9], thread-to-core
allocation [10], reduction of cache coherence traffic [11].

3. Architecture and software overview

In this work, we address a variety of modern parallel ar-
chitectures, including traditional CPU vendors for HPC based on
x86-64 and ARM-based processors. In particular, we explore five
dual-socket servers equipped with various processor microarchi-
tectures: MILAN and ROME from AMD, Ice Lake and Cascade Lake
from Intel, and Huawei TaiShan ARMv8.2-based product. Table 1
summarizes parameters of these platforms.

Among the parameters that characterize every platform are:
base frequency, number of cores, memory specification, and num-
ber of NUMA domains. The studied processors include different
numbers of cores and are clocked by the base frequency listed
in Table 1. The CPU designs of all the platforms feature the
out-of-order execution model and support the frequency boost
technology [12–14], where the maximum turbo frequency de-
pends on the type and intensity of workload, as well as the
number of active cores. The simultaneous multithreading (SMT)
is turned off for all the systems. The studied platforms, excluding
the Cascade Lake-based server, incorporate eight DDR4 memory
channels per socket (CLA-SP offers six memory channels per
socket).

All the platforms represent a group of the ccNUMA shared
memory architectures [15] combining whole memory regions
using 2 × 8, 2 × 1, and 2 × 2 NUMA domains for AMD, In-
el, and Huawei processors, respectively. In multi-chip systems,
iffering distances between cores and NUMA domains cause non-
niform memory access issues and, consequently, can yield CPU
oad imbalance [16]. Generally, the applications will perform best
hen the cores access memory on the same NUMA domain.
NUMA-aware memory locality helps parallel codes achieve a
ore balanced CPU load for memory-intensive applications.
SN Simulator and KPM applications integrate Python packages,

ncluding SciPy, NumPy, Pandas, Numba, and MPI4Py. Considering
parallel implementation of tackled applications with MPI for
ython library usage, we utilize OpenMPI MPI implementation
ith the support of MPI-3 Remote Memory Access (RMA). We
onfigure the software environment identically for all the per-
ormed tests and all computing platforms. Table 2 summarizes
he software configuration used in this work.

. Use case of task-parallel application: SN simulator

.1. Overview of SN Simulator

The Social Networks (SN) Simulator has been designed to
odel and simulate the spread of messages in social networks.



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635
Table 1
Specification of computing platforms.
Platform name Type of CPU Codename Cores Freq. Memory NUMA domain

Gigabyte H262-Z63 2 × AMD MILAN 2 × 64 2.45 512 GiB 2 × 8Gen10 Plus v2 EPYC 7763 GHz DDR4-3200

HPE Proliant DL385 2 × AMD ROME 2 × 64 2.25 512 GiB 2 × 8Gen10 Plus EPYC 7742 GHz DDR4-3200

Supermicro 2 × Intel Xeon Ice Lake 2 × 36 2.4 512 GiB 2 × 1SYS-120C-TR Platinum 8360Y (ICL-SP) GHz DDR4-3200

Huawei 2 × Intel Xeon Cascade Lake 2 × 24 2.9 192 GiB 2 × 1CH121 V5 Platinum 8268 (CLA-SP) GHz DDR4-2933

Huawei Atlas 2 × Kunpeng TaiShan 2 × 48 2.6 512 GiB 2 × 2800 model 3000 920-4826 (ARMv8.2) GHz DDR4-2933
Table 2
Software configuration for SN Simulator and KPM benchmarks.
Software/Package All platforms

Python 3.9.6
Numba 0.53.1
Numpy 1.21.1
Scipy 1.7.1
Pandas 1.3.2
MPI4Py 3.1.1
MPI Library OpenMPI 4.1.1

To develop the simulation model, we first analyzed the struc-
ture of networks, in which messages w.r.t. certain topics are
spread. These networks exhibit a different degree distribution
than most known large social networks. Especially, instead of the
well-known power law property we observed a so called χ2-
distribution. Furthermore, these networks have a high clustering
coefficient and small distances between two randomly chosen
nodes [17]. The structure of these networks also influence the
spreading and cascading behavior of messages.

Second, we looked into features and properties that influence
the spreading of messages in networks. We investigated various
studies [18–24] to find the most influential features that play
a role whether a message has a higher or lower chance to be
resent. In our analysis, we initially identified 25 numerical and
binary features, related to the user and the message, that are
potentially influential. We gradually eliminated features that are
either highly correlated to another feature or only have a minor
influence on the chance for a message to be resent with a re-
cursive feature elimination technique, which reduced the number
of features to 11. Further analysis showed that one feature (poll
in the message) is rarely being used and that two other features
(number of characters and day of the week) also only have little
influence on the chance for a message to be resent, such that
we decided to eliminate these features from the model as well,
leading to 8 features, 4 related to the user and 4 related to the
message. The user features that have the main influence on the
spread of messages are:

• Is the user verified
• Is the user an active user
• Does the user account have a link to another URL
• Are the default profile settings being used

The activity of a user is measured in terms of messages posted
per day, where a user is labeled as an active user if the user has
posted more messages per day than the mean in the respective
data sets. The most important features associated with a message
are:

• Is there a hashtag in the message
• Is there a mention in the message

• Does the message contain a URL

625
• Does the message contain a media element (e.g., photo)

The SN Simulator incorporates these features. When a mes-
sage is created at a certain node (representing a user in a so-
cial network such as Twitter or Facebook), we assign a binary
feature vector to this message. Additionally, each node in the
simulated network is assigned a binary feature vector, which is
selected according to a distribution we observe in real world
social networks.

The messages are then propagated throughout the network as
follows. Each time a message arrives at a certain node (including
the node it was initially created on), the message is resent to the
node’s neighbors with a certain probability. The probability and
also the amount of neighbors that receive the message depends
on (i) the feature vector of the message, and (ii) the feature
vector of the original author of the message. This probability
of forwarding the message is further influenced by the current
distance of the message to the initiator. We observed that the
probability for a message to be resent at a certain node depends
on the distance of this node to the initiator of the message.

The SN Simulator accounts for the structure of the network, in
which messages of a certain type are generated, the two feature
vectors when generating a message, and it simulates the spread of
a large number of messages according to these features as well as
the distance of the nodes reached by each of these messages at
a certain point in time. To analyze the spreading behavior with
several millions of messages of different types, as well as for
validation purposes, it is of key importance to design a parallel,
highly scalable version of the SN Simulator.

4.2. Data sets and parameters

One way to construct a specific simulation is by providing
two input files to the simulator. First, a graph that describes
the structure of the social network that should be simulated. In
our experiments, we used follower–followee relationship graphs
extracted from Twitter. This graph consists of Twitter users that
tweeted about a certain topic. An edge (u, v) in this graph in-
dicates that v is a follower of u. Second, we provide a file that
consists of a set of tweets these users made about a certain
topic. For each tweet, it lists the tweets features, the ID of the
originating author, the features of the originating author and the
number of times it was retweeted. The SN Simulator extracts
information out of this data and uses it to create the propagation
model.

In our experiments we consider multiple data sets, each cor-
responding to one of the following topics: vegan, neos, fpoe and
covid19. For each topic a list of keywords was used to crawl
a follower–followee graph as well as a set of Tweets via the
Twitter API. The tweets of each data set were collected during
a consecutive 41 day period between August 2019 and March
2020. The vegan data set consists of keywords related to vegan-
ism. The fpoe and neos data sets focus on tweets related to the



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

t
T
o
d
c
t

e
r
d
d

s
e
T
t
s

Table 3
Size of the data sets for the SN Simulator.

Number of users Number of tweets

vegan 12088 6030
neos 8400 4487
fpoe 21514 19418
covid19 51391 375736

Austrian political parties FPÖ and NEOS, respectively. They were
acquired before the Parliamentary elections in Austria at the end
of 2019. Finally, the covid19 data set consists of tweets discussing
he social distancing measures in February and March 2020. In
able 3, we state the size of the graphs as well as the number
f tweets in each data set. The first column lists the name of the
ata set, the second column the number of users (or nodes) in the
orresponding graph. The final column lists the number of tweets
hat were collected.

Besides the two input files, there are two important param-
ters that control the scope of the simulation. There is the pa-
ameter sources which describes the number of users that are
esignated to initiate tweets. Next, there is samples, which
enotes the number of tweets initiated by each such user.
Such a selection of authoring users is performed for each pos-

ible combination of message and user feature vectors that was
ncountered in the list of tweets (i.e., in the second input file).
he overall number of initiated tweets is therefore proportionate
o ‘‘number of feature vector combinations’’ times sources times
amples.
Throughout the experiments in this section, we employ sam-

ples = 1000 and set sources between 100 and 400. For such
parameter values, the number of initiated Tweets is of magnitude
107. The resulting simulations are of sufficient size for the pur-
pose of collecting various metrics about the propagation behavior
of the simulated Tweets. Additionally, these simulations are small
enough to be executed on a single compute node. In Section 6.1
we investigate larger simulations that run on multiple nodes.

The workflow of a typical simulation run performed as part of
our experiments may be summarized as follows. First, we decide
on a topic, e.g. vegan. The follower–followee graph as well as
the set of Tweets corresponding to this topic are then provided
to the simulator as input. Additionally, values for samples and
sources are specified to control the scope of the simulation.
Given these input files and parameters, the SN Simulator then
creates a simulation model and runs the simulation. As an out-
put the SN simulator delivers several statistics, for example the
average number of times that Tweets with a certain feature were
retweeted.

4.3. Parallelization strategy and performance analysis

The SN Simulator code implements a task-based parallelism
strategy by employing the MPI standard for Python. In contrast
to the traditional execution scheme for the message-passing in-
terface, the application execution scheme uses the master/worker
approach offered by the mpi4py.futures package. This package
provides a high-level interface for asynchronously executing tasks
on a pool of worker processes using the MPI functionality for
inter-process communication.

During the initial application stage at the master process (rank
0), all required data are loaded and initialized. Afterward, the
required data are exposed by the master to the worker processes
using a hybrid distributed-shared memory model.

To achieve this goal, we first split the global pool of workers
into groups of workers assigned to the shared memory regions of
subsequent computing nodes by using the collective MPI method
626
Split_type with MPI.COMM_TYPE_SHARED parameter. Next, a
head process is selected from every group to receive the broad-
casted data from the master process. Each head process allocates
all received data in the shared memory space of every comput-
ing node using the collective MPI routine MPI_Win_allocate_
shared. As a result, every computing node consists of a single
group of MPI processes that share memory regions and enable
immediate load/store operations on the data.

In the next application stage, the master process composes
and submits the schedules for the pool of tasks to be executed
asynchronously and then waits for the partial outcomes. Simulta-
neously, the worker processes perform a series of tasks submitted
by the master in a round-robin manner, execute them one by
one and further communicate back the outcomes of every task
to the master process. Meanwhile, the master process aggregates
the received partial results from the workers to produce the final
results of the simulation.

Generally, the execution of subsequent tasks is the critical and
most time-consuming part of the code. A task consists of the sim-
ulation of sample-many tweets that originate from a fixed user.
Out of every feature vector, multiple users are sampled, and for
each such user a task is submitted. The number of users sampled
per feature vector is specified with the sources parameter. The
computations assigned to every task are rather compute-bound
and dominated by the calls to the function edge_sample (see
Section 4.5).

We observe that in the basic version of the code, all workers
process a similar number of tasks. However, the performed anal-
ysis reveals a large load imbalance between worker processes.
Fig. 1 illustrates an example of performance analysis for the basic
version of SN Simulator obtained for the vegan data set when
using a platform with two Intel Xeon Platinum 8268 CPUs.

As shown in Fig. 1a, the overall performance is limited by
the worker process that features the highest computation time
of tasks. This worker accomplishes assigned tasks about 3 times
slower than the worker process with the shortest execution time
despite both these workers proceed a comparable number of
tasks (Fig. 1b). Generally, the basic parallelization strategy leads
to workload imbalance between worker processes.

To explain this behavior, we have to look at the cost of all
tasks individually. Fig. 1c traces a detailed cost analysis of ev-
ery task measured on each worker process separately. In the
illustrated example, we reveal the significant difference in the
costs of tasks. The performed analysis helps us indicate two main
groups of tasks. The first group features a large number of tasks
with negligible costs, while the second group includes a relatively
small number tasks with high costs. We reveal that in a typical
execution scheme, the second group of tasks is submitted by the
master process at the end of the tasks queue and, consequently,
is executed during the final part of the simulation.

4.4. Optimization method for tasks and workload distribution

To alleviate or even avoid load imbalancing and improve the
overall performance, we deliver the 2-stage method for code
optimizations. In the first stage, we propose to modify the order
of the task queue and move the costliest tasks at the beginning
of application execution.

The deep analysis of the task execution scheme enables us to
identify that the simulation of messages which are predicted to
be more likely to be retweeted frequently should demand more
computation time. As a result, we distinguish the best candidates
for the costliest tasks and force the master process to submit
them at the beginning of the tasks queue.

To achieve this goal, we propose to sort the feature vectors
heuristically according to their expected runtime. For each such



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

m
a
X
e
e
d
t
1

v
l
w
s
t

Fig. 1. Performance analysis for the basic code of SN Simulator obtained for the
vegan data set and two Intel Xeon Platinum 8268 CPUs: (a) aggregated execution
time of all tasks per each worker process, (b) tasks distribution between worker
processes, and (c) execution time of every task measured on the different worker
processes.

feature vector, the expected number of retweets is an input
of the simulator. This information is usually derived from real
world data and the simulation attempts to match this number.
Therefore, it serves as a good heuristic to predict the runtime of
a simulated tweet.

Fig. 2 demonstrates an example of the impact of the proposed
odification on load balancing, workload distribution, and over-
ll performance obtained for the vegan data set and two Intel
eon Platinum 8268 CPUs. Applying new order of task execution
nables performing all the costliest tasks at the beginning of
xecution (Fig. 2c) and slightly reduces load imbalancing (Fig. 2a)
espite the uneven distribution of tasks (Fig. 2b). In this case,
he proposed method improves the overall performance by about
.15x compared to the basic code.
In the second stage of the proposed method, we focus on alle-

iating the load imbalancing performance disadvantage caused by
ong-running tasks. While analyzing the execution tasks scheme,
e reveal that even a relatively small number of heavy tasks can
trongly limit the overall performance. The key to understanding
his constraint is focusing on the task construction process.
627
Fig. 2. Performance analysis for SN Simulator with modified order of tasks
execution obtained for the vegan data set and two Intel Xeon Platinum 8268
CPUs: (a) aggregated execution time of all tasks per each worker process, (b)
tasks distribution between worker processes, and (c) execution time of every
task measured on the different worker processes.

In the basic version of the code, the SN Simulator simulates
the propagation of retweets in a Twitter follower graph. Gener-
ally, two parameters determine the number of tweets that are
simulated. The first parameter (sources) determines the number
of tweet authors from which tweets originate, while the second
one - samples - denotes the number of tweets initiated by each
of these authors. The samples of many simulated tweets initiated
by a fixed author are considered an atomic task. The same worker
process executed many simulations on a single core in all of these
samples.

As some authors are prone to generate tweets that are likely
to be retweeted multiple times, this caused some of these tasks
to take way longer to be processed than others. Consequently,
it is challenging to balance the workload among workers in a
comparable fashion. However, reducing the cost of the task can
overcome this constraint and, consequently, lead to better CPU
utilization.

To tackle this problem, we deliver the task-splitting approach
that assumes reducing the number of tweets simulated inside
every task. As a result, this approach replaces heavy tasks with a



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

m
c
p
t
m

e
i
t
f
c

p
f
c
r
o
C
f
a

a
n
a
m

c
(
T
r

ore considerable amount of smaller tasks to reach a more effi-
ient task distribution. To achieve this aim, we introduce the third
arameter of the SN Simulator application called sample_split
hat helps us partition each task into a set of sample_split-
any smaller tasks.
However, the more considerable amount of tasks generate

xtra worker-master communication overhead caused by collect-
ng more partial outcomes from the larger number of smaller
asks. As this constraint can lead to performance degradation, we
ace searching trade-offs and synergy between the sizes of tasks,
ommunication overhead, and the overall performance.
Experimentally, we validate and examine the proposed ap-

roach, exploring different values of sample_split parameter
or various application data sets, parameters configurations, and
omputing platforms. Fig. 3 illustrates an example of the cor-
elation between different task sizes and overall performance
btained for the vegan data set and two Intel Xeon Platinum 8268
PUs. To achieve the desired accuracy of this experiment, we per-
orm at least nine repetitions and present the minimum, median,
nd maximum computation times for every configuration.
As shown in Fig. 3a, calibrating the proposed task-splitting

pproach and setting parameter sample_split to 5 brings sig-
ificant performance improvements, accelerating computation of
bout 1.42x. The performed analysis outlines noticeable perfor-
ance improvement for relatively small values for sources pa-

rameter (see Fig. 3a and b). In contrast, the performance gain is
negligible for larger values of the sources parameter (Fig. 3c).

The proposed task-splitting approach opens a way to tackle
the load imbalancing disadvantage. Fig. 4 demonstrates an ex-
ample of the impact of the proposed approach on performance,
distribution of tasks and workers workloads. In the illustrated
example, the new version of the SN Simulator code features
relatively uniform workload distributions over available worker
processes despite the uneven distribution of tasks. The task-
splitting approach results in reduced tasks costs by requirements
of processing a more significant number of tasks in comparison
to the basic version of the code (see Fig. 1c). As a result, the cost
of every task is reduced by a factor of 5, while the total amount
of tasks increases five times.

4.5. Numba-based performance optimization

To elevate the performance of SN Simulator beyond the limits
of the standard Python interpreter, we employ the Numba [25]
python library to optimize hotspots. We use the just-in-time (JIT)
compiler provided by Numba to translate the computing kernels
that – in a typical simulation run – are called tens of millions
of times and consume more than 95% of computing time. The
applied performance analysis of the SN Simulator code shows
that the function called edge_sample lies at the core of our
simulation.

The selected function is the primary hotspot in the simulations
of the spread of messages, as it is called each time a simulated
message arrives at a user in the simulated network. The function
is used to determine which followers of this user will adopt
(i.e., retweet) this message. For each of these retweeting users,
the function edge_sample needs to be called again. This scheme
continues until any user no longer retweets the message, and the
simulation of the current message stops.

The most noticeable parts inside edge_sample function are
(i) the generation of random values that follow a binomial dis-
tribution and (ii) the random sampling from a list without re-
placement. Both of these parts are provided by the NumPy python
library and can be successfully eligible for performance improve-
ments by Numba.
628
Fig. 3. Impact of different values of sample_split parameter on performance
obtained for vegan data set with different parameters configurations, including
(a) sources = 100 (b) sources = 200 and (c) sources = 400, when using
platform with two Intel Xeon Platinum 8268 CPUs.

Every indicated part of edge_sample function is marked as
Numba functions and translated into machine codes during ap-
plication execution (just-in-time compilation). As a result, these
parts are compiled once and used numerous times in a typical
simulation run. Additionally, to improve the efficiency of our
code, we successfully overlap the time-consuming compilation
process of selected hotspots with reading input data. As a result,
all workers hide the compilation process during data loading from
files tackled by the master.

4.6. Experimental results

We perform a set of tests to explore the efficiency of the
proposed methods for different application scenarios that mimic
the flow of messages/tweets on twitter about a certain topic at
a certain time, including four data sets neos, vegan, fpoe, and
ovid19. We benchmark the proposed approach using five servers
see Tables 1 and 2) with Milan, Rome, Ice Lake, Cascade Lake, and
aiShan V110 (ARMv8.2). To ensure the reliability of benchmark
esults, every type of test is repeated at least five times, and the



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

a
t
a

m
r

t
r
b
w
i
w
t
f
(

c
c
F
c
o
T
t
e

Fig. 4. Performance analysis for SN Simulator with proposed task-splitting
approach obtained for sample_split = 5 when exploring the vegan data set
nd two Intel Xeon Platinum 8268 CPUs: (a) aggregated execution time of all
asks per each worker process, (b) tasks distribution between worker processes,
nd (c) execution time of every task measured on the different worker processes.

edian value of measurements are used to get statistically sound
esults, with the relative standard deviation (RSD) less than 2%.

In the first stage of benchmarks, we evaluate the impact of
he applied new tasks execution order on performance. Fig. 5
eports an example of performance gains in comparison to the
asic version of the code considering application configuration
ith samples = 1000 and sources = 100. The applied tests

ndicate a noticeable performance improvement for the platform
ith ARM-based processors, where the new execution order of
asks leads to about 2.1x faster execution. The applied code trans-
ormation yields relatively smaller performance improvements
up to about 1.8x faster) for other platforms.

The next proposed modification expands the SN Simulator
ode with the task-splitting approach that helps us reduce the
ommunication constraints for inter- and intra-CPU data traffic.
ig. 6 outlines the final performance gains achieved for the code
onfiguration with samples = 1000, sources = 100, and the
ptimal values for the sample_split parameter (see Fig. 6b).
he proposed modification accelerates the SN Simulator applica-
ion up to 1.8 times compared to the code version with modified

xecution order of tasks.

629
Fig. 5. Impact of proposed new execution order of tasks on the SN Simulator
performance.

Fig. 6. Impact of task-splitting approach on the performance: (a) total
performance gain, and (b) the optimal values for the sample_split parameter.

Fig. 7. Total performance gain obtained for SN Simulator with enabled
NUMBA-based optimization.

Our experiments are completed by exploring the Numba-
based modification. Fig. 7 shows an example of the impact of
the Numba compilation process on total performance gains for
SN Simulator considering different application data sets with
configuration samples = 1000, sources = 100, and carefully
selected sample_split = 1. We observe that applying Numba-
based modification for SN Simulator significantly reduces the
total execution time for all performed tests.

The proposed approach leads to sustained speed up due to
more efficient utilization of computing resources. The platform
with ARM-based processors features the highest acceleration of
computations (up to 4.17 times) when enabling NUMBA. The
applied tests also indicate a noticeable performance improvement
for the platform with two Intel Xeon Platinum 8360Y, where the
Numba-based modification leads to about 2.5 faster execution.
The performed modification reduces the execution time by about
2x for both platforms with AMD EPYC CPUs.



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

5

5

M
e
c
w
a
g
t
n
i
g
e

m
a
o
u
a
i
A
h

i
a
i
o
s
i
u
s
v

s

5

t
n
c

a
i
b
e
A
M
l

d
t
a
i
s
i
b
o
a
m
i
f
l
M
r
h

s
p
p
(
t
o
c
p
i
w
i

a
p
a
o
p
w

. Use case of data-parallel application: KPM

.1. Overview of KPM application

In this section, we focus on the KPM (Kernel Polynomial
ethod) approach to computing the approximate spectrum of
igenvalues of a given graph. The output of the developed KPM
ode is later used to validate synthetically generated graphs,
hich may be used as input for the SN Simulator. The KPM
pplication approximates the eigenvalue spectrum of a given
raph in form of a histogram of eigenvalues. This metric con-
ains various information about the graph structure, such as the
umber of connected components or how tightly the input graph
s clustered. These statistics can be used to estimate whether a
iven artificially generated graph is similar to a graph that was
xtracted from a real world social network.
The KPM application takes as input the normalized Laplacian

atrix of a given graph, which can be computed from the graph’s
djacency matrix. It then approximates the eigenvalue spectrum
f this Laplacian matrix by computing a histogram of all eigenval-
es. This computation follows the polynomial expansion filtering
pproach introduced in [26]. This approach efficiently approx-
mates the number of eigenvalues that lie in a fixed interval.
repeated application of this approach allows to compute the
istogram bin-by-bin.
We only give a brief overview of the employed approach as

t is quite involved and relies on multiple techniques from linear
lgebra. In essence, to approximate the number of eigenvalues
n a single histogram bin, multiple random sample vectors out
f {−1, 1}n are generated. The number of such samples can be
pecified with the samples parameter. Each such sample vector
s then involved in a series of linear operations. Most notably, it
ndergoes multiplications with the input matrix. The number of
uch multiplications corresponds directly to the value specified
ia the degree parameter. An increase in the values of sam-
ples and degree therefore comes with additional computational
effort, however, also leads to an improved accuracy of the esti-
mation. To control the resolution of the computed histogram, we
use the intervals parameter. This parameter simply specifies
the number of histogram bins that should be computed.

The primary input for the KPM application are sparse matrices.
This is motivated by the desire to compute the eigenvalue spec-
trum of graphs of social networks. Usually, such adjacency matri-
ces are sparse. For example, consider the friendship relationship
graph of the Pokec social network (provided by SNAP [27]) that
was used in our experiments. This graph consists of roughly 1
million nodes but has an average degree of less than 20. The
application therefore relies on SciPy’s compressed sparse row
matrix data type csr_matrix together with its provided linear
operations. Note, for our experiments we used a preprocessed
version of this Pokec graph in which all nodes with degree less
than 6 were removed. This graph still consists of 990,908 nodes.
Fig. 8 presents the approximated eigenvalue spectrum of this
graph.

In summary, a typical execution of the KPM application is
conducted as follows. First, we provide a graph as input. In our ex-
periments we always use the aforementioned graph of the Pokec
social network. Additionally, we set values for samples, degree
and intervals to control the accuracy of the histogram. The
application then runs and computes a histogram of eigenvalues.
The output lists the approximate number of eigenvalues for each
histogram bin.
 T

630
Fig. 8. Approximated eigenvalue histogram of the Pokec friendship relationship
graph. Computed with the KPM application and parameters intervals = 101,
amples = 200 and degree = 300.

.2. Parallelization strategy and performance analysis

The KPM application also utilizes the MPI standard for Python
o enable data parallelization on clusters of multicore ccNUMA
odes. According to the applied execution strategy, the KPM code
ombines distributed and shared memory models.
At the initial application stage, a single MPI process loads

ll required input and read-only data from the file and spreads
t to the other MPI processes. The required data are explicitly
roadcasted to every computing node and then shared within
very node to the MPI processes by the MPI3-RMA interface.
s a result, every computing node consists of a single group of
PI processes that share memory regions and enable immediate

oad/store operations on the data.
In the next application stage, data parallelism is applied to

istribute the workload across all MPI processes. The paralleliza-
ion strategy assumes equal distributions of intervals and samples
cross all MPI processes. Considering a wide range of comput-
ng platforms with different numbers of cores, we also propose
lightly calibrating the intervals and samples values of the
nput parameters if the divisibility of workload is not fulfilled
etween the number of used MPI processes. As a result, the
verall workload equals intervals · samples. Execution of
single sample vector consists of degree-many matrix–vector
ultiplications with the input matrix. The operations performed

n a given sample do not depend on other samples and, there-
ore, can be processed by MPI processes independently. In the
ast application stage, using the MPI reduce operation, a single
PI process aggregates the partial eigenvalue count estimations

eceived from the other MPI processes to construct the final
istogram.
The performed analysis reveals that even though the first

tage executes mainly sequentially, it does not limit the overall
erformance. The measured cost, in this case, is negligible for all
erformed tests and application scenarios. Moreover, the costs of
i) management of workload distribution as well as (ii) aggrega-
ion of the partial outcomes are negligible as well. In contrast, we
bserve that the critical and the most time-consuming part of the
ode mainly corresponds to the sparse matrix–vector products
erformed by well optimized SciPy library. The selected comput-
ng kernel of the code assists in estimating the eigenvalue counts
ithin subsequent samples for every interval by each MPI process

ndependently.
However, although the proposed parallelization strategy en-

bles equal distributions of intervals and samples across com-
uting resources, the performed analysis reveals the load imbal-
ncing between MPI processes. Fig. 9 characterizes an example
f the execution time measurements of the KPM code using the
latform with two AMD EPYC 7742 CPUs. For this experiment
e set intervals = 32, samples = 96 and degree = 100.

his approximates the eigenvalue spectrum of the Pokec graph



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

t
t
t
t
m
p
s

t
t
F
f
i

5

c
m
i
p

Fig. 9. Performance analysis for a basic version of the KPM code obtained on
the system with AMD EPYC 7742 CPUs: (a) pure computation time measured for
every MPI process, (b) partial computation time of subsequent samples measured
independently for every MPI process.

(described in Section 5.1) by computing a histogram with 32 bins.
The values for samples and degree are chosen large enough
o avoid inaccuracies on the tail ends of the approximated his-
ogram. At the same time, they remain small enough to be suited
owards experiments on a single compute node. Fig. 9a illustrates
he pure computation time (without MPI communication costs)
easured for every MPI process separately. Additionally, Fig. 9b
resents partial computation time measured independently for
ubsequent samples processed by every MPI process.
As shown in Fig. 9a, the MPI processes pinned to the cores on

he second CPU spend significantly more time on computation
han the MPI processes that utilize cores located on the first CPU.
urthermore, the costs of subsequently processed samples differ
rom each other (Fig. 9b), although the computational complexity
s comparable for all samples

.3. Adaptation of KPM to ccNUMA systems

During the performance analysis, we reveal some implicit
ommunication constraints that strongly limit the overall perfor-
ance. To explain and solve this issue, we have to look at the

nput-data allocation scheme. To achieve this goal, during the ap-
lication execution, we use the numastat tool to track memory

statistics on a per-NUMA-node basis, including allocation usage,
hits, and misses.

Our experiment shows that according to the first-touch pol-
icy, the data allocation takes place only in the memory region
closest to a physical core on which the MPI process is executed.
Considering the first stage of KPM, where a single MPI process
(sub-master) allocates input data within every node, the appli-
cation exploits a single NUMA memory region per node only.
In consequence, the performance of data traffic is limited for
the efficiency of a single NUMA region, while the other NUMA
regions are not utilized for loading input data. In particular, this
communication constraint is strongly noticeable for modern sys-
tems with AMD EPYC CPUs (see Fig. 9) that offer up to 16 NUMA
regions.

A remedy for this issue is the ccNUMA-aware approach for
allocating input data across available NUMA domains. To achieve
this goal, we propose to create more groups per given node, with
the master rank process broadcasting all input data across these
groups. As a result, a single MPI process per every group called
631
Fig. 10. Performance analysis for a ccNUMA-aware version of the KPM code
obtained on the system with AMD EPYC 7742 CPUs: (a) pure computation time
measured for every MPI process, (b) partial computation time of subsequent
samples measured independently for every MPI process.

group-master (i) receives the required input data, (ii) saves them
in its NUMA domain memory, and finally (iii) shares them with
other MPI processes from a given group.

In the proposed data-allocation strategy, the critical point is
mapping an appropriately chosen number of groups of MPI pro-
cesses on the number of available NUMA domains and physical
cores in a given system. However, the richness of the MPI library
makes this issue relatively easy to overcome by using the MPI-3
RMA interface of MPI for Python.

In particular, MPI delivers the communicator split opera-
tion that in shared-memory platforms allows the creation of
groups of MPI processes such that ranks in each group can
share data memory efficiently. Further, the collective call of
the MPI.Win.Allocate_shared procedure helps us to allocate
memory region for input data that is shared among all processes
in every group. The proposed approach also requires controlling
the binding policy of MPI processes on physical cores, consider-
ing mapping successive MPI processes close to each other. We
achieve the desired binding policy by using the MPI run-time
parameters --map-by core and --bind-to core offered in the
OpenMPI implementation of MPI4Py.

5.4. Performance evaluation

The proposed adaptation of the KPM code to the ccNUMA
systems helps us reduce or even avoid the communication con-
straints for inter- and intra-CPU data traffic. Fig. 10 illustrates
the performance analysis of the new version of the KPM code
calibrated with 16 groups of the MPI processes and mapped on
the 16 NUMA domains offered by the system with two AMD EPYC
7742 CPUs.

In contrast to the basic version of KPM, as shown in Fig. 10a,
the proposed ccNUMA-aware data allocation strategy provides as
balanced as possible workload of computing resources. The costs
of subsequently processed samples feature almost equal partial
execution time (Fig. 10b) for all MPI processes.

We benchmark the proposed approach using five servers with
Milan, Rome, Ice Lake, Cascade Lake, and TaiShan V110 (ARMv8.2)
processors. Each type of test is repeated at least five times, and
the median values are used to get statistically sound results, with

the relative standard deviation (RSD) less than 1%.



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

a
m
d
g

a
A
1
c
b
s
w
T
a
I
N
v
a

6

6

i
o
u
l
n
e
I

a
d
1
r
r
u
p
i
p
s
d

u
1
g
(
w
t
g
3

n
p
n
1
S
p

c
a
2
b
t
v
3

c
l
C
s

Table 4
Impact of ccNUMA-aware data allocation strategy on performance gain for
different computing platforms.
Platform Speedup Number of groups

2x AMD EPYC 7763 1.7 16
2x AMD EPYC 7742 2.71 16
2x Intel Xeon Platinum 8360Y 1.1 2
2x Intel Xeon Platinum 8268 1.09 2
2x Huawei Kunpeng 920 1.2 4

Table 4 outlines the impact of delivered ccNUMA-aware data
llocation strategy on the achieved performance gain. To maxi-
ally alleviate communication constraints of inter- and intra-CPU
ata traffic, we select the best configuration of the number of
roups of MPI processes for every platform separately.
As expected, the optimal number of groups equals the avail-

ble NUMA domains in a given platform. For the platforms with
MD CPUs, the new version of the KPM code requires to use
6 groups of MPI processes to get the best performance. It ac-
elerates the computation of about 1.7x and 2.71x against the
asic code for platforms with MILAN and ROME processors, re-
pectively. The performance gains obtained for other platforms
ith a smaller number of NUMA domains are considerably lower.
he configuration with 2 groups of MPI processes gives the best
cceleration of computations (up to 1.1x) for both platforms with
ntel CPUs. The platform with ARM-based processors features 4
UMA domains and, consequently, requires calibrating the new
ersion of KPM with 4 groups to accelerate the application by
bout 1.2 times maximally.

. Exploration of large-scale computing systems

.1. Evaluation of SN simulator on the intel-based cluster

In the first stage of benchmarks, we evaluate the performance
mpact of using the proposed task-reordering and task-splitting
ptimization methods, as well as the Numba-based modification
nder different application scenarios on the Altair supercomputer
ocated at PSNC.1 The Altair cluster consists of 1320 compute
odes, with two Intel Xeon Platinum 8268 CPUs of 24 cores
ach, at 2.9 GHz, with 192 GB RAM each, interconnected with
nfiniBand EDR.

Fig. 11 depicts the performance comparison between the basic
nd optimized versions of SN Simulator obtained for the vegan
ata set on Altair using 1 up to 32 computing nodes (48 up to
536 cores). In this test, we consider the SN Simulator configu-
ation of samples = 20 000 and sources = 100, resulting in
oughly 2 · 108 simulated tweets in each run. A message sim-
lation of this size could be used to derive insights about the
ropagation of information in large real world social networks
n which millions of messages are sent each day. Following the
roposed task-splitting approach (see Section 4.4), we set the
ample_split parameter to 5 as an optimal value for the vegan
ata set, obtained in the experiment shown in Fig. 3a.
As shown in Fig. 11a, the optimized version of the SN Sim-

lator significantly reduces the execution time when employing
to 32 nodes, in comparison to the basic one. The performance
ains become more evident as the number of cores increases
Fig. 11b), accelerating the application from 3.19 to 6.13 times
hen employing 1 and 16 nodes, respectively. At the same time,
he optimized version of SN Simulator achieves a performance
ain of about 5.6 times against the basic code when employing
2 nodes.

1 PSNC is the Poznan Supercomputing and Networking Center, in Poland.
632
Fig. 11. Performance comparison between the basic and optimized versions of
SN Simulator supplied with the vegan data set on the Altair cluster with different
number of nodes: (a) execution time comparison, (b) total performance gain.

Fig. 12. Performance comparison between the basic and optimized versions of
SN Simulator supplied with the covid19 data set on the Altair cluster with
different number of nodes: (a) execution time comparison, (b) total performance
gain.

As expected, since the vegan data set features an essential
umber of costly tasks (see Section 4.4), the combination of
roposed task-reordering and task-splitting approaches achieve
oticeable partial performance gains of about 1.6x to 3.3x on
up 32 nodes, in comparison to the basic version. Extending the
N Simulator code of the Numba-based optimizations boosts the
erformance additionally by about 1.9 times.
In the next experiment, we consider our largest data set

ovid19 with the configuration of parameters samples = 5000
nd sources = 2000, which initiates simulation for more than
· 109 tweets. In Fig. 12, we plot the performance comparison
etween the basic and optimized versions of SN Simulator with
he underlined configuration of covid19 data set and the optimal
alue for the parameter sample_split = 2, by exploring 1 to
2 nodes of Altair cluster.
For all tested numbers of nodes, the optimized version returns

omparable performance improvements, executing the SN Simu-
ator code 1.8–1.94 times faster than the basic version (Fig. 12b).
ompared to the previous experiment, the overall workload con-
ists of a larger amount of tasks that are smaller on average.



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

–
c
a

D

c
t

D

A

h
t
8
n
C
i

p
i

f

h
s
e
V
d

Fig. 13. Performance comparison between the basic and ccNUMA-aware ver-
sions of the KPM application obtained for the eigenvalue histogram of the Pokec
graph on the cluster with 2x AMD EPYC 7763 per node: (a) execution time
comparison, (b) total performance gain.

Additionally, the covid19 data set seems less prone to producing
disproportionately large tasks. Therefore, the proposed optimiza-
tions for workload distribution bring negligible partial perfor-
mance gain, improving the performance by a factor of 1.03 to
1.11. In contrast, applying Numba-based optimization allows fur-
ther performance improvements, reducing the execution time by
about 1.73–1.78 times.

6.2. Evaluation of KPM on the cluster with AMD MILAN CPUs

In the next stage of benchmarks, we examine the impact
of the proposed ccNUMA-aware approach for the KPM code on
performance by exploring the AMD-based cluster located at the
HPC Centre of Excellence, Munich, Germany. This cluster consists
of 32 nodes, with two AMD EPYC 7763 CPUs of 64 cores each,
and interconnected with InfiniBand HDR. We investigate the KPM
application scenario that computes an approximated eigenvalue
histogram of the Pokec input graph with 128 bins.

Fig. 13 illustrates the performance comparison between the
basic and ccNUMA-aware versions of the KPM application ob-
tained for configuration with intervals = 128, samples = 128,
and degree = 300 on 1 up to 32 nodes of the AMD-based cluster.
Compared to the previous experiments on a single node, these
larger parameter values yield a more accurate approximation of
the eigenvalue spectrum at increased computational cost. The
resulting histogram has a large enough amount of bins and high
enough accuracy to be used in the graph validation process we
described in Section 5.1. The performed tests indicate that the
proposed optimizations boosts the performance of KPM code, for
all tested numbers of nodes (Fig. 13a).

The ccNUMA-aware code modification manages to acceler-
ate the application execution by about 1.64–1.81 times faster
(Fig. 13b). Considering the performance results presented in pre-
vious experiments (see Table 4), we indicated comparable per-
formance gains with an average improvement factor of about 1.7
for the system with 64-core AMD MILAN processors. At the same
time, we observe excellent scalability for the KPM code, where
both basic and optimized versions achieve near linear speedup
up to 32 available nodes.

7. Conclusions

In this paper we explored optimization techniques for the
social sciences simulations: SN Simulator and KPM. Both applica-
tions are based on simulating the flow of messages in a synthetic
graph representing the social media environment.
633
In the case of the first application (SN), a large imbalance
was noticed due to the suboptimal distribution of tasks to the
processors. Changing the order of tasks, their division into smaller
chunks and the use of the NUMBA compiler contributed to pre-
venting load imbalance between MPI processes and improve the
overall performance for all performed tests (over 4 times for the
platform with ARM-based processors).

In the case of KPM, performance analysis revealed communi-
cation constraints that severely limit overall performance. In or-
der to overcome communication obstacles, an improved method
of data distribution to NUMA domains was proposed, thus re-
ducing intra-processor data traffic and allowing more efficient
use of available cores. This helped to improve the acceleration of
selected processors (AMD EPYC 7742) by more than 2.7 times.

The implemented strategies were tested on the basis of 1-node
test environments using modern processors from manufactur-
ers such as: Intel, AMD and Huawei. In addition, to assess the
impact of changes in application performance in a large-scale
computing system, tests were carried out on the HPC clusters. It
was noted that the optimized version of SN Simulator achieves a
performance gain of about 5.6 times against the basic code when
employing 32 nodes. The ccNUMA-aware code modification in
KPM manages to accelerate the application execution by about
1.8 times faster compared to code without optimization.

CRediT authorship contribution statement

Lukasz Szustak: Term, Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Resources, Writ-
ing – original draft, Writing – review & editing, Visualization, Su-
pervision. Marcin Lawenda: Term, Conceptualization, Methodol-
ogy, Formal analysis, Resources, Writing – original draft, Writing
– review & editing, Supervision, Project administration, Funding
acquisition. Sebastian Arming: Methodology, Software, Investi-
gation. Gregor Bankhamer: Methodology, Software, Writing –
original draft. Christoph Schweimer: Conceptualization, Writing
original draft, Writing – review & editing. Robert Elsässer: Con-
eptualization, Writing – review & editing, Supervision, Project
dministration.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request

cknowledgments

This work has been supported by the HiDALGO project and
as been partly funded by the European Commission’s ICT ac-
ivity of the H2020 Programme under grant agreement number:
24115. This paper expresses the opinions of the authors and
ot necessarily those of the European Commission. The European
ommission is not liable for any use that may be made of the
nformation contained in this paper.

Calculations on the HPC system were performed at Poznan Su-
ercomputing and Networking Center, with the help of the Min-
stry of Science and Higher Education, Poland 5052/H2020/2019/2.

The authors are grateful to Supermicro and AMD companies
or granting access to HPC platforms.

The authors thank Christine Gfrerer, Florian Lugstein and Bern-
ard Geiger for collecting, managing and preparing the input data
ets for the SN Simulator as well as for fruitful discussions in
arlier stages of the project. We also would like to thank Jan
elimsky for collecting parts of the data and for many valuable
iscussions.



L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

A

c
l

T
t
o
c
t
r
w

R

vailability

The source code of the SN Simulator [28] and KPM appli-
ation [29] is freely available on github. Both applications are
icensed under the GNU GPL 3.0 [30].

The follower–followee relationship graphs [31] and the sets of
weets [32] used as an input for the SN Simulator can be found on
he CKAN storage of the HiDALGO H2020 project. Various versions
f the Pokec graph used as an input for the KPM application
an also be found on the CKAN [33]. For the experiments in
his paper, we used the graph denoted by pokec_trimmed. The
emaining files in the directory consist of smaller subgraphs that
ere extracted from this graph via breadth-first search.

eferences

[1] E. Chattoe-Brown, Is agent-based modelling the future of predic-
tion? Int. J. Soc. Res. Methodol. 26 (2) (2023) 143–155, http://dx.doi.org/
10.1080/13645579.2022.2137923, arXiv:https://doi.org/10.1080/13645579.
2022.2137923.

[2] F. Altarelli, A. Braunstein, L. Dall’Asta, R. Zecchina, Optimizing spread
dynamics on graphs by message passing, J. Stat. Mech. Theory Exp. 2013
(09) (2013) P09011, http://dx.doi.org/10.1088/1742-5468/2013/09/P09011.

[3] D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence
through a social network, in: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’03, Association for Computing Machinery, New York, NY, USA, 2003, pp.
137–146, http://dx.doi.org/10.1145/956750.956769.

[4] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance,
Cost-effective outbreak detection in networks, in: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’07, Association for Computing Machinery, New York, NY,
USA, 2007, pp. 420–429, http://dx.doi.org/10.1145/1281192.1281239.

[5] Data parallelism, https://en.wikipedia.org/wiki/Data_parallelism.
[6] K. Abdulaziz Alnowibet, I. Khan, K.M. Sallam, A. Wagdy Mohamed, An

efficient algorithm for data parallelism based on stochastic optimiza-
tion, Alexandria Eng. J. 61 (12) (2022) 12005–12017, http://dx.doi.org/10.
1016/j.aej.2022.05.052, URL https://www.sciencedirect.com/science/article/
pii/S1110016822003696.

[7] N. Ma, Y. Xia, V.K. Prasanna, Data parallelism for belief propagation
in factor graphs, in: 2011 23rd International Symposium on Computer
Architecture and High Performance Computing, 2011, pp. 56–63, http:
//dx.doi.org/10.1109/SBAC-PAD.2011.34.

[8] S. Catalán, F.D. Igual, J.R. Herrero, R. Rodríguez-Sánchez, E.S. Quintana-
Ortí, Programming parallel dense matrix factorizations and inversion
for new-generation NUMA architectures, J. Parallel Distrib. Comput. 175
(2023) 51–65, http://dx.doi.org/10.1016/j.jpdc.2023.01.004, URL https://
www.sciencedirect.com/science/article/pii/S0743731523000047.

[9] R. Laso, O.G. Lorenzo, J.C. Cabaleiro, T.F. Pena, J.Á. Lorenzo, F.F. Rivera,
CIMAR, NIMAR, and LMMA: Novel algorithms for thread and memory
migrations in user space on NUMA systems using hardware counters,
Future Gener. Comput. Syst. 129 (2022) 18–32, http://dx.doi.org/10.1016/j.
future.2021.11.008, URL https://www.sciencedirect.com/science/article/pii/
S0167739X21004374.

[10] J. Schwarzrock, H.M.G. de A. Rocha, A.C.S. Beck, A.F. Lorenzon, Effective
exploration of thread throttling and thread/page mapping on NUMA
systems, in: 2020 IEEE 22nd International Conference on High Performance
Computing and Communications; IEEE 18th International Conference on
Smart City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2020, pp. 239–246, http://dx.doi.org/10.1109/HPCC-
SmartCity-DSS50907.2020.00030.

[11] P. Caheny, L. Alvarez, S. Derradji, M. Valero, M. Moretó, M. Casas, Reducing
cache coherence traffic with a NUMA-aware runtime approach, IEEE Trans.
Parallel Distrib. Syst. 29 (5) (2018) 1174–1187, http://dx.doi.org/10.1109/
TPDS.2017.2787123.

[12] Intel 64 and IA-32 Architectures Optimization Reference Manual, https:
//software.intel.com.

[13] AMD EPYC 7003 Series Processors, 2023, https://www.amd.com/en/
processors/epyc-7003-series.

[14] Huawei Atlas 800 Inference Server, https://e.huawei.com/en/products/
computing/ascend/atlas-800-inference-3000.

[15] L. Szustak, R. Wyrzykowski, O. T., V. Mele, Correlation of Performance
Optimizations and Energy Consumption for Stencil-Based Application on
Intel Xeon Scalable Processors, IEEE Trans. Parallel Distrib. Syst. 31 (11)
(2020) 2582–2593.

[16] L. Szustak, et al., Architectural Adaptation and Performance-Energy Op-
timization for CFD Application on AMD EPYC Rome, IEEE Trans. Parallel
Distrib. Syst. 32 (12) (2021) 2852–2866.
634
[17] C. Schweimer, C. Gfrerer, F. Lugstein, D. Pape, J.A. Velimsky, R. Elsässer, B.C.
Geiger, Generating simple directed social network graphs for information
spreading, in: WWW ’22: The ACM Web Conference 2022, Virtual Event,
Lyon, France, April 25 - 29, 2022, ACM, 2022, pp. 1475–1485, http://dx.
doi.org/10.1145/3485447.3512194.

[18] Z. Xu, Q. Yang, Analyzing user retweet behavior on Twitter, in: 2012
IEEE/ACM International Conference on Advances in Social Networks Analy-
sis and Mining, 2012, pp. 46–50, http://dx.doi.org/10.1109/ASONAM.2012.
18.

[19] S. Petrovic, M. Osborne, V. Lavrenko, RT to win! predicting message
propagation in Twitter, in: Proc. 15th International AAAI Conference on
Web and Social Media, 5, 2011, pp. 586–589, 1.

[20] B. Suh, L. Hong, P. Pirolli, E.H. Chi, Want to be retweeted? Large scale
analytics on factors impacting retweet in Twitter network, in: 2010 IEEE
Second International Conference on Social Computing, 2010, pp. 177–184,
http://dx.doi.org/10.1109/SocialCom.2010.33.

[21] L. Hong, O. Dan, B.D. Davison, Predicting popular messages in Twitter, in:
Proceedings of the 20th International Conference Companion on World
Wide Web, WWW ’11, Association for Computing Machinery, New York,
NY, USA, 2011, pp. 57–58, http://dx.doi.org/10.1145/1963192.1963222.

[22] X. Tang, Y. Quan, Q. Miao, R. Hou, K. Deng, Information propagation with
retweet probability on online social network, in: H. Wang, H. Qi, W. Che, Z.
Qiu, L. Kong, Z. Han, J. Lin, Z. Lu (Eds.), Intelligent Computation in Big Data
Era, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 326–333.

[23] K. Lee, J. Mahmud, J. Chen, M. Zhou, J. Nichols, Who will retweet this?
Automatically identifying and engaging strangers on Twitter to spread
information, in: Proceedings of the 19th International Conference on
Intelligent User Interfaces, IUI ’14, Association for Computing Machinery,
New York, NY, USA, 2014, pp. 247–256, http://dx.doi.org/10.1145/2557500.
2557502.

[24] H. Zhao, G. Liu, C. Shi, B. Wu, A retweet number prediction model based
on followers’ retweet intention and influence, in: 2014 IEEE International
Conference on Data Mining Workshop, 2014, pp. 952–959, http://dx.doi.
org/10.1109/ICDMW.2014.152.

[25] Numba documentation (Ver. 0.53), https://numba.readthedocs.io/.
[26] E. Di Napoli, E. Polizzi, Y. Saad, Efficient estimation of eigenvalue

counts in an interval, Numer. Linear Algebra Appl. 23 (4) (2016)
674–692, http://dx.doi.org/10.1002/nla.2048, URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/nla.2048, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1002/nla.2048.

[27] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset
collection, 2014, https://snap.stanford.edu/data/soc-pokec.html.

[28] SN Simulator Version 4.0, 2021, https://github.com/sarming/kpm/releases/
tag/v0.4.

[29] KPM Application Version 4.0, 2021, https://github.com/sarming/
propagation/releases/tag/v0.4.

[30] GNU General Public License v3.0, 2007, http://www.gnu.org/licenses/gpl.
html.

[31] Anonymized follower-followee Twitter graphs, 2021, https://ckan.hidalgo-
project.eu/dataset/metis-outer-graphs.

[32] Anonymized Tweets including features, 2021, https://ckan.hidalgo-project.
eu/dataset/simulation-features-version-2.

[33] Pokec graph in metis format, 2019, https://ckan.hidalgo-project.eu/dataset/
pokec-relationship-graphs.

Lukasz Szustak received a D.Sc. (2019) and a Ph.D.
(2012) in Computer Science (Parallel and Distributed
Computation) granted by the Czestochowa University
of Technology, Poland. His main research interests in-
clude parallel computing and mapping algorithms onto
parallel architectures. His current work is focused on
the development of methods for performance porta-
bility, scheduling, and load balancing, including the
adaptation of scientific applications to modern HPC
architectures.

Marcin Lawenda (M) graduated from the Poznań
University of Technology and received his M.Sc. in
Computer Science (Parallel and Distributed Computa-
tion) in 2000. In 2006 he received Ph.D. degree at
the same university. He has been working for Poz-
nań Supercomputing and Networking Center for more
than 20 years. ML is the project coordinator of Hi-
DALGO2 and the leader of a national and European
projects oriented on grid technology and instrumenta-
tion (e.g. HiDALGO, AMUNATCOLL, CoeGSS, e-IRGSP5,
SGIGrid, RINGrid, DORII, Powiew, PRACE). His re-

search interests include parallel and distributed environments, scheduling and
Grid technologies especially in area of applied sciences. He is also author

http://dx.doi.org/10.1080/13645579.2022.2137923
http://dx.doi.org/10.1080/13645579.2022.2137923
http://dx.doi.org/10.1080/13645579.2022.2137923
http://arxiv.org/abs/10.1080/13645579.2022.2137923
http://arxiv.org/abs/10.1080/13645579.2022.2137923
http://arxiv.org/abs/10.1080/13645579.2022.2137923
http://dx.doi.org/10.1088/1742-5468/2013/09/P09011
http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1145/1281192.1281239
https://en.wikipedia.org/wiki/Data_parallelism
http://dx.doi.org/10.1016/j.aej.2022.05.052
http://dx.doi.org/10.1016/j.aej.2022.05.052
http://dx.doi.org/10.1016/j.aej.2022.05.052
https://www.sciencedirect.com/science/article/pii/S1110016822003696
https://www.sciencedirect.com/science/article/pii/S1110016822003696
https://www.sciencedirect.com/science/article/pii/S1110016822003696
http://dx.doi.org/10.1109/SBAC-PAD.2011.34
http://dx.doi.org/10.1109/SBAC-PAD.2011.34
http://dx.doi.org/10.1109/SBAC-PAD.2011.34
http://dx.doi.org/10.1016/j.jpdc.2023.01.004
https://www.sciencedirect.com/science/article/pii/S0743731523000047
https://www.sciencedirect.com/science/article/pii/S0743731523000047
https://www.sciencedirect.com/science/article/pii/S0743731523000047
http://dx.doi.org/10.1016/j.future.2021.11.008
http://dx.doi.org/10.1016/j.future.2021.11.008
http://dx.doi.org/10.1016/j.future.2021.11.008
https://www.sciencedirect.com/science/article/pii/S0167739X21004374
https://www.sciencedirect.com/science/article/pii/S0167739X21004374
https://www.sciencedirect.com/science/article/pii/S0167739X21004374
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00030
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00030
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00030
http://dx.doi.org/10.1109/TPDS.2017.2787123
http://dx.doi.org/10.1109/TPDS.2017.2787123
http://dx.doi.org/10.1109/TPDS.2017.2787123
https://software.intel.com
https://software.intel.com
https://software.intel.com
https://www.amd.com/en/processors/epyc-7003-series
https://www.amd.com/en/processors/epyc-7003-series
https://www.amd.com/en/processors/epyc-7003-series
https://e.huawei.com/en/products/computing/ascend/atlas-800-inference-3000
https://e.huawei.com/en/products/computing/ascend/atlas-800-inference-3000
https://e.huawei.com/en/products/computing/ascend/atlas-800-inference-3000
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb16
http://dx.doi.org/10.1145/3485447.3512194
http://dx.doi.org/10.1145/3485447.3512194
http://dx.doi.org/10.1145/3485447.3512194
http://dx.doi.org/10.1109/ASONAM.2012.18
http://dx.doi.org/10.1109/ASONAM.2012.18
http://dx.doi.org/10.1109/ASONAM.2012.18
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb19
http://dx.doi.org/10.1109/SocialCom.2010.33
http://dx.doi.org/10.1145/1963192.1963222
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb22
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb22
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb22
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb22
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb22
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb22
http://refhub.elsevier.com/S0167-739X(23)00257-1/sb22
http://dx.doi.org/10.1145/2557500.2557502
http://dx.doi.org/10.1145/2557500.2557502
http://dx.doi.org/10.1145/2557500.2557502
http://dx.doi.org/10.1109/ICDMW.2014.152
http://dx.doi.org/10.1109/ICDMW.2014.152
http://dx.doi.org/10.1109/ICDMW.2014.152
https://numba.readthedocs.io/
http://dx.doi.org/10.1002/nla.2048
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2048
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2048
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2048
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2048
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2048
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2048
https://snap.stanford.edu/data/soc-pokec.html
https://github.com/sarming/kpm/releases/tag/v0.4
https://github.com/sarming/kpm/releases/tag/v0.4
https://github.com/sarming/kpm/releases/tag/v0.4
https://github.com/sarming/propagation/releases/tag/v0.4
https://github.com/sarming/propagation/releases/tag/v0.4
https://github.com/sarming/propagation/releases/tag/v0.4
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
https://ckan.hidalgo-project.eu/dataset/metis-outer-graphs
https://ckan.hidalgo-project.eu/dataset/metis-outer-graphs
https://ckan.hidalgo-project.eu/dataset/metis-outer-graphs
https://ckan.hidalgo-project.eu/dataset/simulation-features-version-2
https://ckan.hidalgo-project.eu/dataset/simulation-features-version-2
https://ckan.hidalgo-project.eu/dataset/simulation-features-version-2
https://ckan.hidalgo-project.eu/dataset/pokec-relationship-graphs
https://ckan.hidalgo-project.eu/dataset/pokec-relationship-graphs
https://ckan.hidalgo-project.eu/dataset/pokec-relationship-graphs


L. Szustak, M. Lawenda, S. Arming et al. Future Generation Computer Systems 148 (2023) 623–635

a
j
s

nd co-author of reports and papers (100+) in conference proceedings and
ournals. He has been a member of the Polish Information Processing Society
ince 2000.

Sebastian Arming received his Master’s degree in Com-
putational Intelligence from TU Wien, Austria, in 2015
and is currently a Ph.D. student at the University of
Salzburg, Austria under supervision of Ana Sokolova.
His research interests include complexity theory, for-
mal methods and coalgebra. He currently focusses on
the verification of probabilistic systems.

Gregor Bankhamer received his Master’s degree in
Computer Science from the University of Salzburg, Aus-
tria, in 2018. Currently he is a Ph.D. student at the same
university under supervision of Robert Elsässer. His
main research interest lies in the analysis of distributed
algorithms and systems. His current work is focused on
algorithms that involve randomization. Research prob-
lems he recently considered include resilient routing
and plurality consensus.
635
Christoph Schweimer is a freelancing Data Scientist,
who previously worked at the Know-Center GmbH in
Graz, Austria. He received his Master’s Degree in Math-
ematics from the Paris Lodron university in Salzburg,
Austria in 2017. Christoph has been involved in pub-
lishing research in the areas of Machine Learning and
Artificial Intelligence.

Robert Elsässer is a Professor at the University of
Salzburg, Austria. He received his M.Sc. (1998) and
Ph.D. (2002) from the University of Paderborn, Ger-
many. From 2003 to 2011, Robert Elsässer worked as a
Junior Professor at the University of Paderborn. During
2005/06 he was a visiting scientist at the University of
California at San Diego, USA, and in 2009/10 a visiting
professor at the University of Freiburg, Germany. His
research interests focus on parallel and distributed
algorithms, as well as on the design and analysis of
large networks.


	Profiling and optimization of Python-based social sciences applications on HPC systems by means of task and data parallelism
	Introduction
	Related works
	Architecture and software overview
	Use case of task-parallel application: SN Simulator
	Overview of SN Simulator
	Data Sets and Parameters
	Parallelization strategy and performance analysis
	Optimization method for tasks and workload distribution
	Numba-based performance optimization
	Experimental results

	Use case of data-parallel application: KPM
	Overview of KPM application
	Parallelization strategy and performance analysis
	Adaptation of KPM to ccNUMA systems
	Performance evaluation

	Exploration of large-scale computing systems
	Evaluation of SN Simulator on the Intel-based cluster
	Evaluation of KPM on the cluster with AMD MILAN CPUs

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Availability
	References


