
Toward Heterogeneous MPI+MPI
Programming: Comparison of OpenMP

and MPI Shared Memory Models

Lukasz Szustak(B), Roman Wyrzykowski, Kamil Halbiniak, and Pawel Bratek

Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland
{lszustak,roman,khalbiniak,pbratek}@icis.pcz.pl

Abstract. This paper introduces our research on investigating the pos-
sibility of using heterogeneous all-MPI programming for the efficient par-
allelization of real-world scientific applications on clusters of multicore
SMP/ccNUMA nodes. The investigation is based on verifying the effi-
ciency of parallelizing a CFD application known as MPDATA, which
contains a set of stencil kernels with heterogeneous patterns. As the first
step of the research, we consider the level of SMP nodes, and compare
the performance achieved by the MPI Shared Memory model of MPI-3
versus the OpenMP approach. In contrast to other works, this paper aims
to evaluate these two programming models in conjunction with the par-
allelization methodology recently proposed [1] for performance portable
programming across multicore SMP/ccNUMA platforms. We show that
the shared memory extension of MPI delivers portable means for imple-
menting all steps of this methodology efficiently, to take advantages of
emerging multicore ccNUMA architectures.

Keywords: MPI shared memory · Multicore SMP/ccNUMA ·
MPDATA

1 Introduction

The Message Passing Interface (MPI) [2] is a dominant parallel programming
model for distributed memory systems, including large clusters with tightly cou-
pled SMP nodes. In the recent past, applications written with nothing except
MPI were able to deliver an acceptable and portable performance, as well as scal-
ability. However, as the number of cores per node has increased, programmers
have increasingly took advantage of the hybrid (heterogeneous) parallel pro-
gramming with MPI for internode communications in conjunction with shared
memory programming systems, such as OpenMP, to manage intranode paral-
lelism [3]. While this hybrid model, known as MPI+X [4], provides a lot of flex-
ibility and performance potential, it burdens programmers with the complexity
of using two parallel programming systems in the same application [5]. Apart
from problems with a proper work of interface between two systems, there are
other open issues, e.g., who manages the cores and how is that negotiated?
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 270–281, 2020.
https://doi.org/10.1007/978-3-030-48340-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_21


Toward Heterogeneous MPI+MPI Programming 271

Version 3.0 of the MPI standard introduces another option for hybrid pro-
gramming that uses the new MPI Shared Memory (SHM) model [6] to build
MPI-everywhere codes for clusters with SMP nodes. In this MPI+MPI model,
the MPI SHM extension enables programmers to create regions of shared mem-
ory that are directly accessible by MPI processes within the same shared mem-
ory domain. Also, several functions were added that enable MPI ranks within
a shared memory region to allocate shared memory for direct load/store access.
The ability to directly access a region of memory shared between ranks can
improve performance in comparison with the pure MPI option, by reducing
memory motion and footprint [3,5].

This paper introduces our research on investigating the possibility of using
heterogeneous all-MPI programming for the efficient parallelization of real-world
scientific applications on clusters of multicore SMP/ccNUMA nodes. The inves-
tigation is based on verifying the efficiency of parallelizing a CFD application
known as MPDATA (Multidimensional Positive Definite Advection Transport
Algorithm) [7]. It contains a set of stencil kernels with heterogeneous patterns.

As the first step of our research, we consider the level of SMP nodes, and
compare the performance achieved by the MPI SHM model versus the OpenMP
approach. The latter has become [4] a dominant choice for parallel programming
of modern shared memory systems used as cluster nodes. The capabilities of
such systems are constantly growing as a result of quick progress in multicore
technology. It is quite easy to build SMP nodes with 112 or even 224 cores (2×56
cores with Intel Xeon Platinum 9282 or 8×28 with Intel Xeon Platinum 8280, see
https://ark.intel.com). Thus, efficient harnessing of multicore SMP nodes with
high degree of parallelism becomes of vital importance for the total performance
of applications.

This paper is organized as follows. Section 2 discusses related works, while
Sect. 3 presents a brief comparison of MPI SHM and OpenMP models. The
MPDATA application is introduced in Sect. 4, which presents also the paral-
lelization methodology for shared memory multi- and manycore architectures.
Mapping MPDATA decomposition onto OpenMP and MPI Shared Memory is
revealed in Sect. 5, while results of experimental evaluation of these two options
are presented and discussed in Sect. 6. The paper is concluded in Sect. 7.

2 Related Work

The MPDATA code has been recently re-written and optimized for execution on
HPC platforms with multicore CPUs and Intel MIC accelerators. The new C++
implementation proposed in [8] allows a more efficient distribution of computa-
tions across the available resources. It makes use of the (3+1)D decomposition
strategy for heterogeneous stencils, that transfers the data traffic from the main
memory to the cache hierarchy by reusing caches properly. Also, to improve the
efficiency of computations, the algorithm groups the cores/threads into indepen-
dent work teams in order to reduce inter-cache communication overheads due to
transfers between neighbor cores.

https://ark.intel.com


272 L. Szustak et al.

Next, to harness the heterogeneous nature of communications in shared mem-
ory systems with ccNUMA architecture, the islands-of-cores approach was pro-
posed in [9]. It allows a flexible management of the trade-off between computa-
tion and communication costs in accordance with features of multicore ccNUMA
architectures. Finally, to reduce the synchronization overheads, an innovative
strategy for the data-flow synchronization in shared memory systems was devel-
oped in [10]. As all designed codes were implemented with OpenMP, their direct
extension on clusters with multicore SMP nodes requires utilizing the hybrid
MPI+OpenMP approach.

This approach has already been applied quite successfully to real scientific
applications [11,12]. For the CFD simulation considered in [11], the hybrid code
can outperform a pure MPI version by up to 20%, while pure MPI still outper-
forms hybrid MPI+OpenMP in modeling of granular materials [12]. Recent sci-
entific works enlighten the complexity of many aspects of the hybrid model that
affect the overall performance and development costs of hybrid programs [2,3,5].
Thus, choosing a right option for parallel programming of real-world applica-
tions on clusters requires further research. In particular, there are surprisingly
few works on performance comparison between MPI+MPI and MPI+OpenMP
approaches. An example is work [13] on a performance evaluation of the MPI
SHM model compared to OpenMP, using two relatively simple case studies: the
matrix-matrix multiplication and Conway’s game of life. The latter is an exam-
ple of an 8-point stencil application. In contrast to this work, our research aims
at evaluating these two programming models in conjunction with the paralleliza-
tion methodology proposed recently [1] for performance portable programming
across multicore SMP/ccNUMA systems. What is important, this methodology
is not tailored to a particular programming approach.

3 MPI Shared Memory Model Compared to OpenMP

By default MPI codes are executed under the distributed memory model that
assumes the private data allocation for each MPI process. In consequence, all
processes have to communicate with each other using calls to MPI functions
that typically moves data explicitly or perform some collective operations [14].
In this memory model, data are not shared automatically across MPI processes.

The MPI-3 RMA (Remote Memory Access) interface extends the default
memory model with a new unified model [3] that is exposed through the MPI
window. An MPI window object can be used to allocate shared memory regions
[14] using the collective MPI routine MPI Win allocate shared. It enables also
the non-contiguous shared memory allocation by specifying the key info parame-
ter alloc shared noncontig in order to fully utilize ccNUMA architectures. In
addition, the function MPI Win shared query is provided to query pointers to
the memory allocated on MPI processes, that enable them immediate load/store
operations with automatically propagated updates of data. As a result, data are
automatically shared between MPI processes in a similar fashion as for OpenMP
codes, where all OpenMP threads access data in parallel and coherent way [15].



Toward Heterogeneous MPI+MPI Programming 273

MPI requires the explicit control of data parallelism. It is responsibility of
programmers to formulate explicitly the workload distribution strategy. Nev-
ertheless, the richness of the MPI library makes this shortage relatively easy
to overcome. In contrast, OpenMP offers a straightforward mechanism for data
parallelism that can automatically split the workload across available threads.
However, as shown in [1], the parallel efficiency of an application can be signifi-
cantly improved by replacing the standard solution for data parallelism, such as
#pragma omp for, by a custom strategy for workload distribution adapted to
the application, as well as to a target architecture. As a result, the data or loop
parallelism with threads often requires a specific parallelisation strategy which
in fact is similar to that of MPI, especially for shared memory programming.

4 Overview of MPDATA Parallelization

4.1 Introduction to MPDATA Application

The MPDATA application implements a general approach to modeling a wide
range of complex geophysical flows on micro-to-planetary scales [7]. MPDATA
belongs to the class of methods for the numerical simulation of fluid flows that
are based on the sign-preserving properties of upstream differencing. It is mainly
used to solve the advection problems on moving grids for a sequence of time
steps, that classifies MPDATA into the group of forward-in-time algorithms. In
this paper, we consider solving 3D problems. The MPDATA numerical scheme
is described in detail in [7].

MPDATA is typically used for long simulations that run thousands of time
steps. A single step operates on five input matrices (arrays), and returns a single
output array that is used in the next step. Each MPDATA step performs a
collection of 17 kernels that depend on each other (the outcomes of prior kernels
typically are inputs for the subsequent ones). Each kernel is a stencil code that
updates elements of its 3D output array, according to a specific pattern.

4.2 Parallelization Methodology for Shared Memory Systems

In the basic version of MPDATA (Listing 4.1) all kernels are executed sequen-
tially, one by one, with each kernel processed in parallel using OpenMP. This
version exploits data parallelism across i-dimension, based on distributing data
across available resources by #pragma omp for directive, and then incorporates
vectorization along k-dimension using #pragma vector directive [16].

The operational intensity of each MPDATA kernel is not high enough [1,17]
to utilize computing resources of modern processors efficiently. Since the code
is not optimized for cache reusing, the performance of this MPDATA version
is limited by the main memory bandwidth. To alleviate these constraints, we
developed [1,8–10] a parallelization methodology for MPDATA heterogeneous
stencil computations. It contributes to ease the memory and communication
bounds, and to better exploit resources of multicore ccNUMA/SMP systems.

This methodology consists of the following parametric optimization steps:



274 L. Szustak et al.

Listing 4.1. Part of 3D MPDATA basic version, corresponding to the 4-th kernel

/* ... */

// Kernel 4

#pragma omp for

for( ... ) // i - dimension

for( ... ) // j - dimension

#pragma vector

for( ... ) // k - dimension

x[i,j,k]=XIn[i,j,k]-(((F1[i+1,j,k]-F1[i,j,k])+(F2[i,j+1,k]

-F2[i,j,k])+(F3[i,j,k+1]-F3[i,j,k]))/H[i,j,k]);

/* ... */

• (3+1)D decomposition of MPDATA [8] – the prime goal of is to take advantage
of cache reusing by transferring the data traffic between kernels from the main
memory to the cache hierarchy. For this aim, a combination of loop tiling and
loop fusion optimization techniques is used, that allows reducing the main
memory traffic at the cost of additional computations.

• Data-flow strategy of synchronization [10] – the main purpose is to synchro-
nize only interdependent threads instead of using the barrier approach that
typically synchronize all threads. This strategy reduces the cost of synchro-
nization. Implementing this strategy for MPDATA needs to reveal the scheme
of inter-thread data traffic during execution of MPDATA kernels.

• Partitioning cores into independent work teams [9] – this strategy delivers
two scenarios for executing MPDATA kernels: the first one performs less
computations but requires more data traffic, while the second scenario allows
us to replace the implicit data traffic by replicating some of computations.
As a result, the second scenario is successfully used to reduce inter-processor
communications between caches in ccNUMA systems, while the first scenario
is applied inside each processor.

• Vectorization – the last step is responsible for ensuring the performance porta-
bility of vectorizing MPDATA computations. In paper [1], we proposed the
7-step procedure for the MPDATA code transformation to allow the compiler
to perform the vectorization automatically.

Figure 1 illustrates the hierarchical decomposition of MPDATA according to
the proposed methodology. In general, the MPDATA domain is partitioned into
p sub-domains that are processed by p processors of a given ccNUMA platform
(Fig. 1a). Now each processor embraces a work team of cores, where each work
team processes a sub-domain following the (3+1)D decomposition (Fig. 1b). Fur-
thermore, each sub-domain is decomposed into blocks of size that enables keeping
all the required data in the cache memory. The successive blocks are processed
sequentially, one by one, where a given block exploits data parallelism across i-
and j-dimensions (Fig. 1c) to distribute workload across available cores/threads.
Each core of a given work team executes computations corresponding to all
MPDATA kernels, that are performed on appropriate chunks of data arrays.



Toward Heterogeneous MPI+MPI Programming 275

Fig. 1. Decomposition of MPDATA: a) domain partitioning into sub-domains, b) sub-
domain decomposition into blocks of size adjusted to cache capacity, c) parallel exe-
cution of kernels within a single block by a given work team, and d) synchronization

Finally, the data layout used for storing arrays enforces performing the vector-
ization along k-dimension.

Because of data dependencies between the kernels, two synchronization levels
have to be considered: inside every work team (first level), and between all
work teams (second one). The parallelization of every block requires providing
five synchronization points inside every work team. To improve the efficiency
for the first level, only interdependent threads are synchronized according to
data dependencies of kernels (Fig. 1d). Additionally, all work teams have to be
synchronized after each time steps to ensure the correctness of simulation.

In order to implement the parallelization methodology automatically, we pro-
posed [1] the parameterized transformation of the MPDATA code to achieve
the high sustained and scalable performance for ccNUMA shared memory sys-
tems. As a result, the adaptive MPDATA code follows along with parameters of
hardware components such as memory hierarchy, multi-/manycore, threading,
vectorization, and their interaction with MPDATA computations.

5 Mapping MPDATA Decomposition onto Shared
Memory Programming

5.1 Data Parallelism

The complexity of the proposed hierarchical decomposition (see Fig. 1) makes
it impossible to efficiently implement parallelization across available cores using
general approaches for data parallelism, such as #pragma omp for construct of
OpenMP. Instead, based on the four-step procedure for MPDATA code cus-
tomization [1], we developed a dedicated scheduler that is responsible for the



276 L. Szustak et al.

management of workload distribution and data parallelism. The main assump-
tion is to calibrate the developed hierarchical domain decomposition for a given
computing platform, before the execution of a specific numerical simulation.

Following the proposed customization, our scheduler explicitly define the
scope of work for all available computing resources of a given ccNUMA system.
As a result, each physical core is assigned to a given work team that process
all MPDATA blocks from its sub-domain, and then is linked to appropriately
selected pieces of distributed data for all MPDATA kernels within every block.
This is achieved by providing a suitable loop-level management of loop itera-
tions distributed across computing resources. A simplified structure of loop-level
management for the proposed hierarchical decomposition is shown in Listing 5.1.

Since the scope of work for each core is individually determined, the proposed
methodology can be successfully implemented for any shared memory model that
supports data parallelism. To map efficiently the proposed decomposition onto
shared memory programming systems, such as OpenMP and MPI SHM, each
OpenMP thread or MPI process has to be associated with the workload defined
for a given physical core, using its ID (OpenMP thread ID or MPI rank). A part
of this issue is selecting a correct policy for binding OpenMP threads or MPI
processes to physical cores that can guarantee optimality of both data parallelism
and inter-core communication paths. Both Intel MPI and Intel OpenMP offer a
flexible interface to control thread/process affinity [14,16].

5.2 Memory Allocation and Data Sharing

The MPDATA code distinguishes two groups of data: (i) a large set of 3D arrays
(matrices) of floating-point type processed during MPDATA computation, and
relatively small packages of data of various types required for the loop-level
management with the proposed scheduler. For performance reasons, it is of vital
importance to allocate the first group of data closest to a physical core on which
a given OpenMP thread or MPI process is executed. For the OpenMP version,
achieving this goal is based on utilizing the first-touch policy with parallel ini-
tialization. For the MPI version, specifying the alloc shared noncontig info
key enables to allocate the first group of data in noncontiguous memory regions,
and as a result allow eliminating negative ccNUMA effects.

The noncontiguous memory allocation strategy also permits us to avoid repli-
cations of data of the first group between MPI processes. In contrast, we propose
replicating the read-only data of the second group to expose their copies indi-
vidually to each MPI process. Because of heterogeneity and fine-grain nature
of these data, this replication data strategy definitely simplifies the structure of
code at the negligible cost of extra memory consumption.

5.3 Synchronization

Besides solving issues of data parallelism, memory allocation and data sharing,
the new version of MPDATA requires also providing an efficient synchronization
mechanism. We solved [10] this issue for the OpenMP code by developing the



Toward Heterogeneous MPI+MPI Programming 277

Listing 5.1. Structure of loop-level management of new 3D MPDATA implementation

for (...) // i-dim for sub -domains

for (...) // j-dim for sub -domains

for (...) // i-dim for MPDATA blocks

for (...) // j-dim for MPDATA blocks

for (...) // k-dim for MPDATA blocks

{

// Parallelization across cores

for (...) // i-dim for sub -blocks of 1st kernel

for (...) // j-dim for sub -blocks of 1st kernel

// Vectorization

for( ..) // k-dim for sub -blocks of 1st kernel

/*.... Kernel 1 ...*/

/*... Synchronization Points ...*/

/*... and other MPDATA kernels ...*/

}

custom mechanism for our data-flow strategy. This mechanism uses low-level
compiler intrinsincs such as fetch-and-add instruction. This solution negatively
affects the code portability across emerging compilers and CPU architectures,
due to the need for validation of the correctness of code before its real use.

In contrast, the MPI-3 version delivers programming solutions that allow the
portable implementation of the proposed synchronization strategy. This imple-
mentation is based on the non-blocking barrier MPI ibarrier and corresponding
MPI Waitall routine used for the subsequent completion. Following the scheme
of inter-core data traffic in the MPDATA application outlined in [10], the exe-
cution of computations by a given core depends on outcomes generated by two
neighbor cores placed on its right and left sides (see also Fig. 1d). As a result, the
data-flow strategy can be successfully implemented by starting the non-blocking
synchronization for the left neighbor of every core, next for its right neighbor,
and afterward waiting until all of the cooperated cores complete the synchro-
nization operations identified by MPI requests (Listing 5.2).

The MPI SHM interface assumes also an explicit use of synchronization to
ensure memory consistency, as well as the visible of changes in memory to the
other processes [14]. In consequence, we select the passive target synchronization
model, defined by the pair of MPI Win lock all and MPI Win unlock all func-
tions. These functions specify the time interval, called an RMA access epoch,

Listing 5.2. A code snippet for MPI version of data flow strategy

MPI_Win_sync(MPDATA_Win_to_Sync );

MPI_Ibarrier(MPDATA_LEFT_MEMBERS_COMMUNICATOR , MPIreq +0);

MPI_Ibarrier(MPDATA_RIGHT_MEMBERS_COMMUNICATOR , MPIreq +1);

MPI_Waitall(2, MPIreq );



278 L. Szustak et al.

when memory operations are allowed to occur. Afterward, the MPI Win sync
function has to be used to ensure completion of memory updates before using
the MPI ibarrier that synchronize all processes in time [14].

6 Benchmarking MPDATA Codes

We benchmark four versions of MPDATA: (A) basic, non-optimized implemen-
tation; (B) code with (3+1)D decomposition of MPDATA domain; (C) version
B with data-flow synchronization; (D) version C with partitioning cores into
independent work teams. All versions are implemented using both MPI and
OpenMP shared memory programming. A series of experiments is performed on
three shared memory ccNUMA platforms (Table 1). Among them are 2-socket
servers with either Cascade Lake-SP (CLX-SP) or Skylake-SP (SKL-SP) Intel
Xeon CPUs, and 4-socket server with Broadwell (BDW-EX) Intel Xeon CPUs.
The MPDATA codes provide vector-friendly data structures that enable us to
easy switch between AVX 2.0 and AVX-512, by setting a properly chosen com-
piler arguments [1]. All experiments are compiled using Intel compiler version
18.0.5 with the optimization flag -O3 and properly chosen compiler arguments
for enabling auto-vectorization. The MPI codes are developed with Intel MPI
Library 2018 Update 4. All tests are repeated 10 times, and average execution
times are used to obtain statistically sound results, with the relative standard
deviation (RSD) less than 1%.

Figure 2 depicts comparison of execution times (in seconds) for OpenMP
and MPI codes of all MPDATA versions, achieved on three computing platforms
outlined in Table 1 for the domain of size 2048 × 1024 × 64. In addition, both
OpenMP and MPI implementations of all MPDATA versions are compared for
different sizes of domain. An example of such comparison is illustrated in Fig. 3.

Table 1. Specification of computing platforms (https://ark.intel.com)

Computing resources 2× Intel Xeon
Platinum 8280L
(CLX-SP)

2× Intel Xeon
Platinum 8168
(SKL-SP)

4× Intel Xeon
E7-8890v4
(BDW-EX)

Scalar/SIMD Turbo freq. [GHz] 3.3/2.4 3.4/2.5 2.6

Sockets 2 2 4

Cores/Threads 56/112 48/96 96/192

SIMD AVX-512 AVX-512 AVX2 (256
bits)

Main memory 2× 6× 16GB
DDR4-2933

2× 6× 16GB
DDR4-2666

4× 4× 16GB
DDR4-2400

Memory bandwidth [MB/s] 281.5 255.9 204.8

Peak performance* [Gflop/s] Scalar 369.6 326.4 499.2

SIMD 2150.4 1920.0 1996.8

*Refers to multiplication instructions performed with Turbo frequency

https://ark.intel.com


Toward Heterogeneous MPI+MPI Programming 279

The presented performance results correspond to the double precision floating
point format, and 5000 time steps.

Fig. 2. Comparison of execution times of different MPDATA versions (A, B, C and D)
achieved for both OpenMP and MPI, assuming the domain of size 2048 × 1024 × 64,
while using various computing platforms: a) 2× CLX-SP, b) 2× SKL-SP, and c) 4×
BDW-EX

Fig. 3. Comparison of execution times of different MPDATA versions obtained for both
OpenMP and MPI with various problem sizes on the platform equipped with two Intel
Xeon Cascade Lake-SP CPUs (2× CLX-SP)



280 L. Szustak et al.

The benchmark results achieved for the first version ((A)) confirm a slightly
high performance of the MPI code against the OpenMP implementation. This
is an effect of overheads introduced by OpenMP runtime scheduling, while the
MPI implementation from the beginning uses our scheduler that performs the
loop distribution before computations.

In contrast, the OpenMP implementation of the version B returns better
performance results for all performed tests. In fact, this benchmark reveals
a negative impact of large number of synchronization points required by the
(3+1)D decomposition of MPDATA [9] on the overall performance, with the
MPI barrier resulting in greater performance losses than the OpenMP barrier.

The version C allows us to solve the synchronization issue for both MPI and
OpenMP. As a result, the achieved performance is kept on a similar level for both
programming models, with some advantage of MPI on the platforms with two
CPUs. Finally, MPI and OpenMP implementations of the resulting version D
feature practically the same performance, since the differences in the execution
time between OpenMP and MPI models do not exceed 4% in favour of OpenMP.

7 Conclusions and Future Works

This paper demonstrates that the shared memory extension added in MPI-3 is
efficient enough to take advantages of emerging multicore ccNUMA architec-
tures. An example of such architectures is the newest Cascade Lake Intel Xeon
Platinum 9282 processor, which packs two whole processors in a single socket
offering 56 cores totally. Another remarkable example is the second generation
of AMD EPYC processors, known as Rome. Using the multi-chip design with 4
modules interconnected via AMD Infinity Fabric, these emerging architecture is
expected to deliver up to 64 cores per CPU.

The presented benchmarks show very similar performance results for both
OpenMP and MPI shared memory implementations of the MPDATA CFD appli-
cation on ccNUMA platforms with 2 and 4 CPUs. What is important is that
MPI SHM delivers portable means to implement efficiently all steps of the paral-
lelization methodology recently proposed for performance portable programming
across multicore SMP/ccNUMA platforms. As a result, the resulting MPI code
allows us to accelerate the MPDATA application more than 9 times as compared
to the original version, achieving the sustained performance of 583 Glop/s for
the server with two Cascade Lake Intel Xeon processors (each with 28 cores).

The aim of our future paper is to extend these results on the cluster level,
in order to verify if heterogeneous MPI+MPI programming is able to success-
fully replace the common MPI+OpenMP hybrid programming model, providing
portable application programming across forthcoming HPC platforms.

Acknowledgments. This research was supported by the National Science Centre
(Poland) under grant no.UMO-2017/26/D/ST6/00687 and by the project financed
within the program of the Polish Minister of Science and Higher Education under
the name “Regional Initiative of Excellence” in the years 2019–2022 (project no.



Toward Heterogeneous MPI+MPI Programming 281

020/RID/2018/19, the amount of financing 12 000 000 PLN). The authors are grateful
to Intel Technology Poland for granting access to HPC platforms.

References

1. Szustak, L., Bratek, P.: Performance portable parallel programming of heteroge-
neous stencils across shared-memory platforms with modern Intel processors. Int.
J. High Perform. Comput. Appl. 33(3), 507–526 (2019)

2. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: Proceedings of the 17th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing, PDP
2009, pp. 427–436 (2009)

3. Hoefler, T., et al.: MPI+MPI: a new hybrid approach to parallel programming
with MPI plus shared memory. Computing 95(12), 1121–1136 (2013). https://doi.
org/10.1007/s00607-013-0324-2

4. Rabenseifner, R., Hager, G., Blaas-Schenner, C., Reichl, R.: MPI+X—Introduction
to Hybrid Programming in HPC (2019). https://moodle.rrze.uni-erlangen.de/
course/view.php?id=388

5. Gropp, W.: MPI+MPI: Using MPI-3 Shared Memory As a Multicore Programming
System. https://www.caam.rice.edu/mk51/presentations/SIAMPP2016 4.pdf

6. Brinskiy, M., Lubin, M., Dinan, J.: MPI-3 shared memory programming introduc-
tion. In: High Performance Parallelism Pearls: Multicore and Many-core Program-
ming Approaches, vol. 2, pp. 305–318. Morgan Kaufmann (2015)

7. Smolarkiewicz, P.K.: Multidimensional positive definite advection transport algo-
rithm: an overview. Int. J. Numer. Methods Fluids 50(10), 1123–1144 (2006)

8. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adap-
tation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coproces-
sor. Sci. Program. 2015, Article ID 642705, 14 p. (2015). https://doi.org/10.1155/
2015/642705

9. Szustak, L., Halbiniak, K., Wyrzykowski, R., Jakl, O.: Unleashing the performance
of ccNUMA multiprocessor architectures in heterogeneous stencil computations.
J. Supercomput. 75(12), 7765–7777 (2018). https://doi.org/10.1007/s11227-018-
2460-0

10. Szustak, L.: Strategy for data-flow synchronizations in stencil parallel computa-
tions on multi-/manycore systems. J. Supercomput. 74(4), 1534–1546 (2018)

11. Ouro, P., Fraga, B., Lopez-Novoa, U., Stoesser, T.: Scalability of an Eulerian-
Lagrangian large-eddy simulation solver with hybrid MPI/OpenMP parallelism.
Comput. Fluids 179(3), 123–136 (2019)

12. Yan, B., Regueiro, R.A.: Comparison between pure MPI and hybrid MPI-OpenMP
parallelism for Discrete Element Method (DEM) of ellipsoidal and poly-ellipsoidal
particles. Computat. Particle Mech. 6(2), 271–295 (2018). https://doi.org/10.
1007/s40571-018-0213-8

13. Karlbom, D.: A performance evaluation of MPI shared memory programming.
Master’s thesis, KTH, Sweden (2016)

14. Intel MPI Library Developer Guide for Linux OS, March 2019
15. OpenMP Application Programming Interface Version 5.0, November 2018
16. Intel C++ Compiler 19.0 Developer Guide and Reference, March 2019
17. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottle-

necks of stencil computations using the execution-cache-memory model. In: Pro-
ceedings of the 29th ACM International Conference on Supercomputing, pp. 207–
216 (2015)

https://doi.org/10.1007/s00607-013-0324-2
https://doi.org/10.1007/s00607-013-0324-2
https://moodle.rrze.uni-erlangen.de/course/view.php?id=388
https://moodle.rrze.uni-erlangen.de/course/view.php?id=388
https://www.caam.rice.edu/mk51/presentations/SIAMPP2016_4.pdf
https://doi.org/10.1155/2015/642705
https://doi.org/10.1155/2015/642705
https://doi.org/10.1007/s11227-018-2460-0
https://doi.org/10.1007/s11227-018-2460-0
https://doi.org/10.1007/s40571-018-0213-8
https://doi.org/10.1007/s40571-018-0213-8

	Toward Heterogeneous MPI+MPI Programming: Comparison of OpenMP and MPI Shared Memory Models
	1 Introduction
	2 Related Work
	3 MPI Shared Memory Model Compared to OpenMP
	4 Overview of MPDATA Parallelization
	4.1 Introduction to MPDATA Application
	4.2 Parallelization Methodology for Shared Memory Systems

	5 Mapping MPDATA Decomposition onto Shared Memory Programming
	5.1 Data Parallelism
	5.2 Memory Allocation and Data Sharing
	5.3 Synchronization

	6 Benchmarking MPDATA Codes
	7 Conclusions and Future Works
	References




