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Abstract. In our previous works, a parallel application dedicated to the
numerical modeling of alloy solidification was developed and tested using
various programming environments on hybrid shared-memory platforms
with multicore CPUs and manycore Intel Xeon Phi accelerators. While
this solution allows obtaining a reasonable good performance in the case
of the static intensity of computations, the performance results achieved
for the dynamic intensity of computations indicates pretty large room
for further optimizations.

In this work, we focus on improving the overall performance of the
application with the dynamic computational intensity. For this aim, we
propose to modify the application code significantly using the loop fusion
technique. The proposed method permits us to execute all kernels in a
single nested loop, as well as reduce the number of conditional operators
performed within a single time step. As a result, the proposed opti-
mizations allows increasing the application performance for all tested
configurations of computing resources. The highest performance gain is
achieved for a single Intel Xeon SP CPU, where the new code yields the
speedup of up to 1.78 times against the original version.

The developed method is vital for further optimizations of the appli-
cation performance. It allows introducing an algorithm for the dynamic
workload prediction and load balancing in successive time steps of simu-
lation. In this work, we propose the workload prediction algorithm with
1D computational map.

Keywords: Numerical modeling of solidification · Phase-field
method · Parallel programming · OpenMP · Workload prediction ·
Load balancing · Intel Xeon Phi · Intel Xeon Scalable processors

1 Introduction

The phase-field method is a powerful tool for solving interfacial problems in
materials science [9]. It has been not only used for solidification dynamics [7,8],
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but has been also applied to other phenomena such as viscous fingering [3], frac-
ture dynamics [5], and vesicle dynamics [9]. In our previous works [4,10,12], a
parallel application dedicated to the numerical modeling of alloy solidification,
which is based on the phase-field method, was developed and tested using various
programming environments on hybrid shared-memory platforms with multicore
CPUs and manycore Intel Xeon Phi accelerators. In these works, two different
versions of application were considered: with the static and dynamic intensity
of computations. The results of experiments shown that in the second case the
performance and scalability drop significantly. In particular, for the static com-
putational intensity, the usage of 4 KNL processors permits us to accelerate
the application about 3.1 times against the configuration with a single KNL
processor. At the same time, the performance results achieved in the case of
the dynamic intensity of computations indicated pretty large room for further
optimizations, since for example the utilization of 4 KNL devices gives only the
speedup of 1.89 times.

In this work, we focus on improving the overall performance of the solidi-
fication application with the dynamic computational intensity. We propose an
optimization method which is based on the loop fusion technique and assumes a
significant modification of the application source code. This method permits us
to compress the main application workload into a single nested loop, as well as
reduce the number of conditional operators which have to be performed within
a single time step. At the same time, the developed method is vital for further
optimizations of the application performance. It allows introducing an algorithm
for the dynamic workload prediction and load balancing in successive time steps
of simulation. In this work, we propose the workload prediction algorithm with
1D computational map.

This paper is organized as follows. Section 2 outlines the numerical model,
as well as presents the basic version of the solidification application with the
dynamic intensity of computations. Section 3 outlines the approach for perfor-
mance optimization of the application. The next section presents performance
evaluation of the proposed method on platforms equipped with Intel Xeon
Scalable CPUs and Intel KNL accelerators. Section 5 outlines the algorithm for
the workload prediction and load balancing, which is based on 1D computational
map. Section 6 concludes the paper.

2 Parallelization of Numerical Modeling of Solidification
with Dynamic Intensity of Computation

2.1 Overview of Numerical Model

In the modeling problem studied in this paper, a binary alloy of Ni-Cu is con-
sidered as a system of the ideal metal mixture in liquid and solid phases. The
numerical model refers to the dendritic solidification process [1,13] in the isother-
mal conditions with constant diffusivity coefficients for both phases. It allows us
to use the field-phase method defined by Warren and Boettinger [14]. In the
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model, the growth of microstructure during the solidification is determined by
solving a system of two PDEs. The first equation defines the phase content φ:
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where: Mφ is defined as the solid/liquid interface mobility, ε is a parameter
related to the interface width, η is the anisotropy factor, HA and HB denotes
the free energy of both components, cor is the stochastic factor which models
thermodynamic fluctuations near the dendrite tip. The coefficient θ is calculated
as follows:

θ =
∂φ

∂y
/
∂φ

∂x
. (2)

The second equation defines the concentration c of the alloy dopant, which
is one of the components of the alloy:
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where: Dc is the diffusion coefficient, Vm is the specific volume, R is the gas
constant.

In this model, the generalized finite difference method [2,6] is used to obtain
the values of partial derivatives in Eqs. (1) and (2). In order to parallelize com-
putations with a desired accuracy, the explicit scheme is applied with a small
time step Δt = 1e − 7s.

The resulting computations [12] belong to the group of forward-in-time,
iterative algorithms since all the calculations performed in the current time step
k depend on results determined in the previous step k − 1. The application code
consists of two main blocks of computations, which are responsible for deter-
mining either the phase content φ or the dopant concentration c. In the model,
the values of φ and c are determined for nodes distributed across a considered
domain (Fig. 1). For this aim, the values of derivatives in all nodes have to be
calculated at every time step.

In our previous work [12], two different cases were introduced – with the static
and dynamic intensity of computations. In the first case, the workload of com-
puting resources is constant during the application execution, since a constant
number of equations is solved. This assumption corresponds to modeling prob-
lems in which the variability of solidification phenomena in the whole domain
has to be considered. In the second case, the model is able to solve differential
equations only in part of nodes, which is changing during the simulation fol-
lowing the growth of microstructure. The use of a suitable selection criterion
allows reducing significantly the amount of computations. The consequence is a
significant workload imbalance, since the selection criterion is calculated after
the static partitioning of the grid nodes across computing resources.
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Fig. 1. Phase content for the simulated time tS = 2.75 × 10−3s

2.2 Basic Version of Solidification Application with the Dynamic
Intensity of Computations

Figure 2 illustrates the computational core of the solidification application with
the dynamic intensity of computations, for a single time step. All the compu-
tations in the application are organized as five loops that iterate over all nodes
of the grid. Two of them, with kernels K1 and K3, execute calculations in the
boundary nodes, while the other two loops, with kernels K2 and K4, perform
computations for the internal part of the grid. The last loop completes the exe-
cution of a single time step. The selection of the boundary and internal nodes
of the grid is implemented using four conditional statements, which have to be
executed within a single time step.

All kernels of the application are organized as two nested loops, where the
outer and inner loops iterate over the grid nodes and neighbors of each node,
respectively. The inner loop corresponds to stencil computations used for deter-
mination of partial derivatives. Figures 3 and 4 depict the code snippets corre-
sponding to kernels K1 and K2 that are responsible for determining the dopant
concentration c for the boundary and internal nodes of the grid, respectively.
The structure of kernels K3 and K4 that calculate the phase content φ is sim-
ilar. For a given node i, the indices node e[offset+j] of its neighbours are
kept in the configuration file describing the whole grid. In consequence, the pat-
terns of all 22 stencils are determined at runtime. The structure of kernels allows
their parallelization using omp parallel for directives of OpenMP for the outer
loops.

The application studied in this paper uses the SOA (structure of arrays)
layout of memory, where computations are performed using one-dimensional
arrays. For instance, node conc0[i] contains value of the dopant concentration
for the i-th node, while node Fi0[i] corresponds to value of the phase content
for this node. The transformation to the SoA organization of memory from the
original AoS (array of structures) layout, which was used in the original code,
are in line with the first step of the methodology proposed in work [4].
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Fig. 2. General scheme of basic version of solidification application with the dynamic
intensity of computations

The criterion for selecting grid nodes plays a vital role for the overall per-
formance of the application. In the basic version of the solidification application
with the dynamic computational intensity, the selection criterion (see Fig. 2) is
checked during execution of kernels K2 and K4. The execution of this criterion
involves two additional conditional operators. As a result, six conditional state-
ments have to be executed within a single time step. Moreover, the execution of
the selection criterion leads to the analysis of practically all nodes of the grid
(excluding boundary ones), not just nodes within the area of grain growth.
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Fig. 3. Kernel K1

Fig. 4. Kernel K2
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Fig. 5. General scheme of modified version of solidification application with the
dynamic intensity of computations

3 Performance Optimization of the Application Using
Loop Fusion

In this section, we present a method for optimizing the performance of solidi-
fication application with the dynamic computational intensity. This method
assumes a significant modification of the application source code using the loop
fusing technique. This optimization technique assumes merging selected loops,
in order to reduce the loop overheads, as well as increase the instruction paral-
lelism, improve the data locality, and even reduce data transfers [11].

Figure 5 presents the general scheme of executing a single time step of the
application after applying the loop fusion technique. In contrast to the basic
version of code (Fig. 2), all workloads of the modified version are executed in a
single nested loop. Such a solution allows us to reduce the number of conditional
statements used to selecting the boundary and internal nodes of the grid, as
well as to decrease the number of conditional statements required for checking
the selection criterion. In practice, the execution of a single time step requires
now to perform only two conditional statements, instead of six ones in the basic
version.

Implementing the loop fusion requires also a suitable modification of the
selection criteria. The resulting criterion is obtained by merging the selection
criteria used for the kernels K2 and K4 in the basic code. Moreover, due to
removing the loop completing each time step, some additional calculations have
to be performed in the new selection criterion.

In the modified scheme of the application execution (Fig. 5), the selection
criterion is still calculated for all nodes of the grid. However, this scheme allows us
to introduce further optimization of the application performance by providing a
method for the efficient workload prediction and load balancing across resources
of a computing platform (see Sect. 5).
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Table 1. Specification of tested platforms

Intel Xeon Platinum 8180 (SKL) Intel Xeon Phi 7250F (KNL)

Number of devices 2 1

Number of cores per device 28 68

Number of threads per device 56 272

Base frequency [GHz ] 2.5 1.4

(AVX frequency) (1.7) (1.2)

SIMD width [bits] 512 512

AVX peak for DP [GFlop/s] 3046.4 2611.2

Size of last level cache [MB] 38.5 34

Memory size 512GB DDR4 16GB MCDRAM

96GB DDR4

Memory bandwidth [GB/s] 119,2 MCDRAM: 400+

DDR4: 115.2

4 Experimental Results

In this section, we present performance results obtained for the approach
proposed in the previous section, assuming the double precision floating point
format. The experiments are performed for two platforms (Table 1):

1. SMP server equipped with two Intel Xeon Platinum 8180 CPUs (first gener-
ation of Intel Xeon Scalable Processor architecture);

2. single Intel Xeon Phi 7250 F processor (KNL architecture).

The KNL accelerator is utilized in the quadrant clustering mode with the
MCDRAM memory configured in the flat mode. All the tests are compiled using
the Intel icpc compiler (version 19.0.1) with -O3 and -xMIC-AVX512 flags for
Intel KNL, and -xCore-AVX512 -qopt-zmm-usage = high flags for Intel Xeon
Platinum CPUs. In order to ensure the reliability of performance results, the
measurements of the execution time are repeated r = 10 times, and the median
value is used finally.

Table 2 presents the total execution times and speedups achieved for the
basic and optimized versions of the solidification application with the dynamic
computational intensity. The tests are executed for 110 000 time steps, and two
grid sizes: 2000×2000 and 3000×3000, using three configurations of computing
resources:

1. single Intel Xeon Platinum 8180 CPU;
2. two Intel Xeon Platinum 8180 CPUs;
3. single Intel KNL processor.

The analysis of Table 2 permits us to conclude that the proposed method
allows increasing significantly the performance of computations for all configu-
rations of computing resources. for the grid of size 2000 × 2000, the highest
performance gain is achieved for configuration with a single Intel Xeon Platinum
CPU, when the new code yields the speedup of about 1.78 times against the basic
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Table 2. The execution times and speedups achieved for the basic and optimized
versions of the solidification application with the dynamic intensity of computational

Size of grid Computing resources Execution time [s] Speedup

Basic TB Optimized TOp S = TB/TOp

2000 × 2000 1 × SKL 1785 1001 1.78

2 × SKL 1456 837 1.74

1 × KNL 1661 1078 1.54

3000 × 3000 1 × SKL 4061 2359 1.72

2 × SKL 3266 2005 1.63

1 × KNL 3869 2540 1.52

version. At the same time, the lowest speedup equal to 1.54 times is obtained on
Intel KNL processor. For configuration with two Intel Xeon CPUs, the developed
implementation allows accelerating the simulation by 1.74 times. For the second
grid, the performance gains achieved by the proposed optimization method are
similar.

5 Toward Dynamic Workload Prediction and Load
Balancing: 1D Map Approach

Although the proposed optimization method (see Sect. 3) allows increasing the
performance of computations, it does not ensure an efficient workload distribu-
tion across computing resources. Thus, the next step of performance optimization
of the solidification application with the dynamic computational intensity will
focus on resolving this issue. To achieve this goal, we propose an algorithm for
the dynamic workload prediction.

This algorithm is responsible for predicting the computational workload in
successive time steps of the simulation. In practice, it permits us to adjust the
computational domain to the domain of simulation. The computational domain
refers to the grid area wherein the primary computations are performed and the
selection criterion is checked. The prediction of the workload for the next time
step k + 1 is based on results of computations performed in the current step k.
In practice, if values of variables in a grid node are computed in a given time
step, this node and its neighbours are taken into consideration when predicting
the computational domain for the next time step.

The workload prediction algorithm proposed in this paper is illustrated in
Fig. 6. It is based on representing the grid nodes using an 1D array. The compu-
tational domain predicted for the next time step is defined by two coordinates
referring respectively to the beginning (minNode) and end (maxNode) of the area
wherein the computations are performed and the selection criterion is checked.
For the first time step (k = 1), the area of checking the selection criterion includes
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Fig. 6. Predicting domain of computation in successive time steps with 1D map

the whole grid. In this case, minNode = 0 and maxNode = grid size. Then, start-
ing from the second time step (k = 2), the selection criterion is checked only
within the area adjusted to the domain of simulation.

Predicting the computational domain plays a significant role in ensuring the
efficient load balancing across computing resources (cores). In the basic version
of the application, the selection criterion is checked for all nodes of the gird. It

Fig. 7. General scheme of a single time step in solidification application with workload
prediction using 1D map
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leads to undesirable situations when only a part of cores perform primary com-
putations, while the rest of cores are responsible only for checking the selection
criterion. The usage of the algorithm for workload prediction permits resolving
this problem. As a result, the selection criterion is not checked for the entire
grid, but only for the predicted area (Fig. 7). This ensures a more efficient work-
load distribution across cores, since all cores will perform primary computations
within the domain of simulation in successive time steps.

6 Conclusions and Future Works

The main challenge of this work is the performance optimization of the solidi-
fication application with the dynamic computational intensity. For this aim, we
propose to modify the application code significantly using the loop fusion tech-
nique. The proposed approach permits us to execute all kernels of the application
in a single nested loop, as well as reduce the number of conditional operators
that have to be performed within a single time step.

The achieved performance results show that the proposed optimization
method allows increasing the application performance for all tested configura-
tions of computing resources. The highest performance gain is achieved for a
single Intel Xeon CPU, where the new code yields the speedups of about 1.78
and 1.72 times against the basic version, respectively for grids of size 2000×2000
and 3000×3000. At the same time, the usage of the proposed method for a single
Intel KNL accelerator permits to reduce the execution time of about 1.54 and
1.52 times, respectively.

The aim of our future work is to investigate the possibility of accelerating
the studied application using the dynamic workload prediction and workload
balancing. In particular, we are planning to incorporate the algorithm presented
in this paper, which is based on 1D computational map, into the modified code
which uses the loop fusion technique. Also, it is expected to develop another
algorithm for workload prediction and load balancing which uses 2D computa-
tional map. This solution should allow adjusting the domain of computations to
the domain of simulation more accurately.
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