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Abstract. In this paper, for the first time, we explore and establish
the combined benefits of heterogeneous DVFS (dynamic voltage fre-
quency scaling) control in improving the energy-performance behavior of
data-parallel applications on shared-memory multicore systems. We pro-
pose to customize the clock frequency individually for the appropriately
selected groups of cores corresponding to the diversified time of actual
computation. In consequence, the advantage of up to 20% points over the
homogeneous frequency scaling is achieved on the ccNUMA server with
two 18-core Intel Xeon Gold 6240 containing 72 logical cores in total.
The cost and efficiency of the proposed pruning algorithm for selecting
heterogeneous DVFS configurations against the brute-force search are
verified and compared experimentally.

Keywords: Data-parallel applications · Energy saving ·
Heterogeneous voltage frequency scaling · Multicore · ccNUMA

1 Introduction

Energy efficiency becomes one of the main challenges in the race of high-perfor-
mance computing (HPC) to Exascale [11]. The scientific community is attempt-
ing to address this challenge in different ways on both hardware and software
levels. State-of-the-art solution methods in this area can be generally divided [6]
into system-level and application-level categories.

A widely accepted technique from the first category is dynamic voltage and
frequency scaling (DVFS) [13]. It is known [8] as an efficient method to save
energy for memory-bound applications when CPU cycles are being wasted as
they are stalled on the main memory [8]. Using DVFS allows lowering the oper-
ational voltage/frequency at the cost of possibly higher execution time [3].

For multicore processors with shared memory, DVFS can be performed [9]
at various level of granularity: (i) per-chip DVFS with changing the whole chip’s
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frequency, (ii) cluster-level DVFS with multiple on-chip voltage regulators driv-
ing a set of DVFS domains, and (iii) per-core DVS with a separate regulator
for each core. In particular, the per-core frequency control is available in more
recent Intel processors (based on the Haswell architecture and later) by limiting
the minimum and maximum frequencies for a given CPU core [18]. While the
first level represents homogeneous voltage frequency scaling across the proces-
sor, the other two levels correspond to heterogeneous scaling, which can help [2]
getting the most performance out of the system.

Data parallelism is the most common parallel decomposition strategy, by
which an application’s data domain is decomposed into as many data parti-
tions as threads assigned to the computation. In data-parallel model, tasks are
assigned to threads, and each task performs similar types of operations on dif-
ferent data. At an abstract programming level, data-parallel programs consist of
a loop body executing on different parts of the input data [16].

Data-parallel programs are growing in importance, increasing in diversity,
and demanding increased performance from hardware while preserving mini-
mized energy consumption. In our previous works, we explore the usability of
the DVFS technique as a tool for balancing energy savings with admissible per-
formance losses for such data-parallel algorithms/applications as 3D MPDATA
from computational fluid dynamics [14,17], and conjugate gradient [15].

Another example of using DVFS for data-parallel applications is presented
in paper [4], which explores the relationship between task scheduling and energy
constraints for stencil computation, a class of memory-bound applications that
are quite common in scientific computing. This paper and our previous works
apply homogeneous voltage frequency scaling for multicore CPUs, possibly com-
bined with concurrency throttling. This solution seems to be a natural choice for
homogeneous multicore and regular data-parallel applications structured with a
uniform behavior when all cores or threads execute a similar type of work [2].

Typically, using heterogeneous DVFS across homogeneous multicore CPUs
is justified [2] for irregular or unstructured applications when at a given time,
cores might do different types of work. On the contrary, in this paper, we explore
and establish for the first time the combined benefits of heterogeneous DVFS con-
trol and performance heterogeneity in improving the energy-performance behav-
ior of regular data-parallel applications on homogeneous multicore CPU systems
with shared memory, including ccNUMA (cache-coherent non-uniform memory
access) ones. The rationale behind these benefits lies in the evolving relation-
ship between feasible sizes of applications (determined by sizes of data sets)
and increasing variety in the core number. The consequence is thread divergence
within an application and load imbalancing across cores, resulting in deteriorat-
ing energy efficiency. The usage of heterogeneous DVFS allows us to mitigate
the deterioration and reduce energy consumption without the performance loss.

The material of this paper is organized in the following way. Section 2
describes the basics of our approach, including a use case of application studied
in the paper, as well as a more detailed motivation and the problem statement.
A brute-force search and a pruning algorithm for selecting heterogeneous DVFS
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configuration across homogeneous multicore platforms are proposed in Sect. 3
and Sect. 4, respectively. Section 5 provides an overview of related work, while
Sect. 6 presents conclusions.

2 Basics

2.1 Use Case of Data-Parallel Application: 3D Diffusion Problem

As the bulk of physics phenomena, the diffusion process is described [5] by a
partial differential equation shown below:

∂U/∂t = ∂2U/∂x2 + ∂2U/∂y2 + ∂2U/∂z2 (1)

In Eq. (1), the function U = U(x, y, z, t) describes concentration of a physical
quantity in point (x, y, z) at moment t. In some sense, this equation is universal.
For example, it can describe the process of heat transfer where the unknown
function U(x, y, z, t) represents temperature. The studied application is based
on the finite difference method [20], which results in the following equation:
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We focus on modeling 3D diffusion problems defined over the structured
rectilinear domain of sizes X ×Y ×Z in i−, j−, and k−dimensions, respectively.
This iterative numerical algorithm is intended to run long simulations engaging
even many thousands of time steps. Each step performs a single computing
kernel - a 3D stencil code. The application code features a constant computation
intensity for all steps, so the simulation time is proportional to their number.

In the basic code of the application (Listing 2.1), the computing kernel is
implemented in parallel using the OpenMP standard. The parallelization strat-
egy exploits data parallelism across i−dimension, based on distributing data
across available resources by #pragma omp for directive, and then incorporates
vectorization along k−dimension using #pragma vector directive.

The studied application is characterized by vector-friendly data structures
that enable taking advantage of the vectorization process. However, the data
traffic requirements constraint the parallel efficiency of the code by the main
memory bandwidth. The performance bottleneck is mainly noticeable for rather
large problems with domain sizes that significantly exceed the cache capacity.

In this work, all experiments are performed on the Intel-based ccNUMA
server S2600WFT with two 18-core Intel Xeon Gold 6240 CPUs (Cascade Lake
architecture) containing 72 logical cores in total. Each processor is equipped with
24.75 MB of L3 cache. The thermal and power limitations of the test platform
permit setting the minimum clock frequency to 1.0 GHz and then sampling it at
every 0.1 GHz to reach the maximum Turbo Boost speed of about 2.5 GHz.

All energy measurements are provided by the Yokogawa WT310 power meter
[17], monitoring the entire platform. This power meter passes the power to the
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Listing 2.1. Parallelization of data-parallel application using OpenMP

#pragma omp for

for(int i=0; i<X; i++) // i - dimension

for(int j=0; j<Y; j++) // j - dimension

#pragma omp simd

for(int k=0; k<Z; k++) // k - dimension

v(i,j,k) = u(i,j,k)

v(i,j,k) += xS * (u(i-1,j,k) - 2*u(i,j,k) + u(i+1,j,k))

v(i,j,k) += yS * (u(i,j-1,k) - 2*u(i,j,k) + u(i,j+1,k))

v(i,j,k) += zS * (u(i,j,k-1) - 2*u(i,j,k) + u(i,j,k+1))

server under the load and measures the total energy consumption in real-time [6,
17]. It allows us to obtain maximally accurate and reliable energy measurements.
Moreover, to make sure the experimental results for energy are trustworthy, we
customize the number of time steps for every tested domain size to keep the
execution time at the level of at least 700 s. As a result, the relative standard
deviation (RSD) for all benchmarks does not exceed 1.5% and 2.5% for execution
time and energy consumption measurements, respectively. Besides, we ensure the
server is located in an air-conditioned server room providing stable temperature,
as well as it is fully dedicated to our experiments.

2.2 Motivation for the Research and Problem Statement

The proposed parallelization (see Listing 2.1) splits up iterations within the first
loop (i-dimension) and distributes them over the available threads corresponding
to the OpenMP parallel region. As a result, the uniform workload distribution
occurs only when the number X of iterations is equally divided among the num-
ber LC of logical cores. Otherwise, the parallelization scenario leads to workload
imbalance and thread divergence. In this case, the load imbalancing percentage
(LIP) corresponds to the ratio of total number of threads that perform more
loop iterations to the total number of logical cores:

LIP = (X mod LC)/LC · 100% (3)

Assuming X > LC, the more loaded threads perform R times more iterations
than the rest of threads, where the parameter R can be expressed as:

R = �X/LC�/(�X/LC� − 1) (4)

Figure 1 characterizes the execution time and energy consumption when solv-
ing the 3D diffusion problem with various domain sizes. In all examples, R = 2.
This study assumes a limit of 2% performance losses to achieve energy savings.

The left parts of Fig. 1 present the execution time and energy consumption for
various domain sizes, assuming the usage of homogeneous DFVS across cores for
different frequencies. As shown in Fig. 1a and Fig. 1b, the optimal performance-
energy trade-off (marked with red points) corresponds to the highest CPU fre-
quency since reducing the frequency leads to energy savings but breaks the
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assumed limit for performance losses. The reason is that all required data reside
in the cache hierarchy, and computing units are not waiting for loading data
from the main memory.

In contrast, in Figs. 1c and 1d, we observe that reducing the clock frequency
does not affect performance for large domain sizes. Now the execution time
is practically constant despite decreasing the frequency from the highest to the
lowest one. In this case, the performance depends primarily on the main memory
speed, and frequency scaling does not affect the execution time. Consequently,
the DVFS method allows reducing the total energy consumption up to 30% with
negligible performance losses not exceeding 1–2% for all performed tests.

However, our experiments reveal a need for revisiting the DVFS technique
even in this case that commonly assumes homogeneous frequency scaling across
cores. To explain this, let us move on to the analysis of the right parts of Fig. 1a–
d, which demonstrate the execution time distribution across threads for different
domain sizes and a variety of workloads with varying values of LIP parameter,
where LIP ∈ {8, 25, 50}%. More precisely, these plots show the total execution
time that every OpenMP thread spends on (i) computation (area marked in
blue color) and (ii) synchronization. In turn, the synchronization costs are split
into two stages: (i) the arrival stage that puts threads arriving at the barrier
into a waiting state (area marked in red color), and (ii) the departure stage that
releases from the barrier all waiting threads (marked in gray color).

The cost of the departure stage depends on the number of synchronization
points, which in our study increases linearly with the number of time steps.
As expected, the time required by this stage is practically uniform for every
OpenMP thread. For a single synchronization point, this time mainly depends
on the OpenMP implementation chosen and hardware limitations.

However, the cost of actual computation (see blue regions in the right parts
of Fig. 1) differs across threads. The same is true for the cost of the arrival
stage of synchronization. This heterogeneity results from non-uniform workload
distributions over available cores/threads, described by LIP and R parameters.

Additionally, we observe a negative impact of the inter-socket data traf-
fic on thread divergence. This undesirable effect becomes essential only when
threads operate on data located in the cache hierarchy. As shown in the right
parts of Figs. 1a and 1b, the threads pinned to cores located on the boundaries
between sockets feature a higher time of actual computation even if they execute
a fewer number of iterations. This time is mainly limited by the inter-socket data
exchange overhead. On the contrary, the overhead is negligible or simply imper-
ceptible for larger domains when the time of actual computation is constrained
by the main memory speed (see Figs. 1c and 1d, respectively).

Summarizing our observations, the homogeneous variant of DVFS method
allows selecting the performance-energy trade-off considering the total execu-
tion time that reflects the maximum computation time obtained across a pool of
threads. Consequently, threads that process fewer loop iterations waste energy
waiting at points of synchronization in the arrival stage. This disadvantage inten-
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Fig. 1. Execution time and energy consumption for solving the 3D diffusion problem
with various domain sizes, using homogeneous DFVS. (Color figure online)
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sifies with a constantly increasing number of cores offered by modern shared-
memory computing systems.

3 Heterogeneous DVFS: Brute-force Search

The analysis from Sect. 2 motivates us to adjust the frequency and supply voltage
to individual cores. Our key idea is to customize the clock frequency individually
for the appropriately selected groups of cores corresponding to the diversified
time of actual computation. We distinguish two heterogeneous DVFS scenarios
that prioritize the appropriately selected groups of cores.

The first scenario corresponds to smaller problem sizes (Figs. 1a and 1b),
when we can identify cores with the time of actual computation limited by
inter-socket data traffic overheads. In this case, we distinguish three groups of
cores, including: (i) cores located on the boundaries between sockets; cores with
a higher (ii) and a fewer (iii) number of loop iterations. The amounts of cores
in the last two groups reflect the LIP parameter and depend on the domain
size and number of cores. Based on the time of actual computation for every
group, a higher voltage/frequency should be assigned to the first group, then for
the second one, and the lowest for the last group. The second scenario assumes
larger problem sizes where the main memory constraints result in performance
degradation (Figs. 1c and 1d). Here, only two groups are indicated, including
cores with a higher (ii) and a fewer (iii) number of loop iterations. Hence, a
higher priority and thus a higher voltage/frequency are given to the first group.

To fully explore the heterogeneous DVFS approach, we test almost all fre-
quency configurations for groups, considering various domain sizes. More pre-
cisely, while examining a given frequency for the group with a higher priority,
we test different frequency combinations for the group with a lower priority by
scaling down the frequency from a fixed level to the minimum, sampling it at
every 0.2 GHz. For example, when setting clock speed to 2.0 GHz for cores in the
first group, we combine it with the set {2.0, 1.8, ..., 1.0} GHz of frequencies for
the second group. We also reveal no need to scale down the clock speed for cores
located on the boundaries between sockets. As expected, setting the maximum
frequency/voltage for these cores guarantees to achieve the best results in terms
of both performance and energy consumption.

The summary of performed tests is depicted in Figs. 2 and 3. The first one
shows the best heterogeneous frequency setups determined for various domain
sizes with up to 1–2% performance losses. We select three groups of clock speeds
for domains of sizes not exceeding 138 × 138 × 138 (these domains fit in the
cache), while two groups are enough for larger domains.

Figure 3 presents the advantages of using heterogeneous voltage/frequency
scaling compared to homogeneous scaling, achieved for different domain sizes.
The proposed approach permits a maximum energy reduction of about 25% for
the domain of size 150 × 150 × 150, when the profit for homogeneous scaling is
about 9% only. In general, the heterogeneous approach allows us to achieve better
energy profits for all performed tests. The most significant energy improvement
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Fig. 2. The best heterogeneous frequency setups selected for various domain sizes.

Fig. 3. Comparison of energy-savings for homogeneous and heterogeneous DVFS
approaches applied to various domain sizes.

compared to the homogeneous solution is obtained for the size of 96 × 96 × 96.
In this case, we observe the advantage of about 20% points over the traditional
frequency scaling, which does not bring any energy improvement.

4 Pruning Algorithm for Selecting Heterogeneous DVFS
Configurations

The main disadvantage of the brute-force search is its high cost. Let us assume we
begin tests with a clock speed equal to fmax. Then we decrease frequency starting
from fstart up to fstop by every fstep. Let F = {fmax, fstart, . . . , fstop}, where
|F| = N , be a set of tested frequencies. According to the brute-force technique of
searching for frequencies for cores with higher and lower workloads, we combine
each frequency fi from the set F with a subset of F containing elements fj such
that fj ≤ fi. As a result, the number TC of tested configuration is expressed as
TC = N(N + 1)/2, where the cardinality N of set F is as follows:

N = (fstart − fstop)/fstep + 2 (5)
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Fig. 4. Block diagram of the pruning algorithm for selecting heterogeneous DVFS
configurations

For example, using the brute-force strategy with fmax, fstart, fstop, and fstep

equal to respectively 2.5, 2.4, 1.0, and 0.2 GHz, requires testing TC = 45 fre-
quency configurations. In each of them, we perform energy consumption tests,
and their run time should be long enough to ensure the stability of measurements.
Therefore, finding the best frequency configuration in this way is a highly time-
consuming task. In this section, we propose a pruning algorithm for selecting the
best heterogeneous DVFS configuration. This algorithm allows us to significantly
reduce the value of TC and speed up finding the best frequency configuration.

The proposed algorithm is shown in Fig. 4. It consists of two stages, the aim
of which is to find the best frequencies fhw, flw for cores with higher and lower
workloads, respectively. The input parameters of the algorithm include La, which
is an acceptable performance loss. For example, La = 1.02 allows the frequency
to be reduced until a 2% increase in run time is achieved. We use the routine
Set(f1, f2) to examine frequency configurations - it sets clock speeds f1 and f2

for groups of cores with higher and lower workloads, respectively. Analogously,
the routine Set b(f) sets frequency f for cores located on the boundaries between
sockets. In Fig. 4, the routine Measure(T, E) is responsible for measuring the
execution time T and energy consumption E for the current configuration. To
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Table 1. Comparison of brute-force search (B-F) and proposed algorithm (A) for
domains of various size X = Y = Z

R LIP
[%]

Domain
size

fhw [GHz] flw [GHz] TC Energy
reduction [%]

Efficiency
rE [%]

B-F A B-F A B-F A B-F A

2 8 78 2.4 2.4 1.8 1.8 45 8 16.62 16.62 100.00

2 25 90 2.0 2.0 1.8 1.8 45 7 17.14 17.14 100.00

2 50 108 1.8 1.6 1.4 1.2 45 11 22.88 22.40 97.90

3/2 8 150 2.4 2.0 1.2 1.0 45 10 25.04 23.98 95.77

3/2 25 162 2.2 2.2 1.2 1.2 45 10 17.92 17.92 100.00

3/2 50 180 2.0 2.0 1.4 1.4 45 9 16.17 16.17 100.00

4/3 8 222 2.4 2.2 1.0 1.2 45 10 19.52 18.33 93.90

4/3 25 234 2.2 1.8 1.2 1.4 45 9 17.02 15.97 93.83

4/3 50 252 1.4 1.4 1.2 1.2 45 10 21.61 21.61 100.00

provide the accuracy of results, we repeat all measurements m times and cal-
culate their median value (m = 5 as default). The algorithm checks if all data
reside in the cache memory. When this condition is met, cores located on the
boundaries between sockets have the highest time of actual computation (see
Figs. 1a and 1b). In this case, the best strategy is to let these cores work with
the maximum frequency to deal with data exchange overheads.

A set of tests is performed to explore the speed and efficiency of the proposed
algorithm. Table 1 presents a comparison of results obtained using the brute-force
search and pruning algorithm for different values of R and LIP . The comparison
is based on the number TC of configurations tested by the pruning algorithm
and efficiency rE , where rE is the ratio (in %) of energy reduction achieved
by both techniques. In all tested cases, the algorithm’s efficiency exceeds 90%
and in more than half of them reaches 100%. At the same time, we significantly
reduce the cost of selecting a heterogeneous DVFS configuration. While the
brute-force search always requires exploring 45 frequency configurations, the
pruning algorithm achieves the goal by examining only 7–11 configurations.

5 Related Works

The methods of improving energy efficiency in computing can be divided [6,
10] into hardware-level or system-level. The methods from the first category
aim to optimize the energy efficiency of the environment where applications
are performed. The solutions from the second category focus mainly on the
optimization of applications for performance and energy. These methods use
application-level models for predicting the performance and energy consumption
of applications. The approach proposed in this work combines methods from both
categories since it is based on DVFS and the application-level model.
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For data-parallel applications, the combination of methods from both cate-
gories is also considered by Reddy and Lastovetsky in work [10]. They propose
a method to solve the bi-objective optimization problem of an application for
performance and energy on homogeneous clusters of modern multicore CPUs.
This method gives a diverse set of Pareto-optimal solutions and can be com-
bined with the DVFS technique to provide a better set of solutions. However,
the proposed approach target only homogeneous DVFS policies.

At the same time, heterogeneous voltage frequency scaling is studied in a
number of works that can be included into the first category. Unlike this paper,
the studied methods employ application-agnostic models [7]. They are princi-
pally deployed at the operating system (OS) level [12] or as a runtime system
extending the OS [2,19]. Therefore, they require changes to the OS [6]. Typically
these methods propose asymmetry-aware or heterogeneity-aware schedulers that
exploit the asymmetry [1,9] or heterogeneity [12,19] between sets of cores in a
multicore platform to find optimal DVFS configurations. For example, work [1]
studies a case when an application running on some cores coexists together with
its co-runners (applications running on other cores), while paper [12] considers
the heterogeneity of cores in ARM architectures.

6 Conclusions

This paper studies the benefits of heterogeneous DVFS control and performance
heterogeneity in improving the energy-performance behavior of data-parallel
applications on homogeneous multicore CPU systems. Using the 3D diffusion
problem as a use case, we show that using heterogeneous voltage/frequency
scaling permits significant energy improvement compared to the homogeneous
solution. The advantage of up to 20% points over the homogeneous frequency
scaling is achieved on the ccNUMA server with two 18-core Intel Xeon 6240.

The cost and efficiency of the proposed pruning algorithm for selecting het-
erogeneous DVFS configurations against the brute-force search are compared
experimentally. In all tests, the efficiency of the pruning algorithm exceeds 90%
and in more than half of them reaches 100%, which indicates that both tech-
niques return the same energy saving. At the same time, we significantly reduce
the cost of selecting a heterogeneous DVFS configuration. While the brute-force
search always requires exploring 45 frequency configurations, the pruning algo-
rithm achieves the goal by examining only 7–11 configurations.
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