
PPAM 2017 Special Issue

Performance portable parallel
programming of heterogeneous stencils
across shared-memory platforms with
modern Intel processors

Lukasz Szustak and Pawel Bratek

Abstract
In this work, we take up the challenge of performance portable programming of heterogeneous stencil computations
across a wide range of modern shared-memory systems. An important example of such computations is the Multi-
dimensional Positive Definite Advection Transport Algorithm (MPDATA), the second major part of the dynamic core of
the EULAG geophysical model. For this aim, we develop a set of parametric optimization techniques and four-step
procedure for customization of the MPDATA code. Among these techniques are: islands-of-cores strategy, (3þ1)D
decomposition, exploiting data parallelism and simultaneous multithreading, data flow synchronization, and vectorization.
The proposed adaptation methodology helps us to develop the automatic transformation of the MPDATA code to
achieve high sustained scalable performance for all tested ccNUMA platforms with Intel processors of last generations.
This means that for a given platform, the sustained performance of the new code is kept at a similar level, independently of
the problem size. The highest performance utilization rate of about 41–46% of the theoretical peak, measured for all
benchmarks, is provided for any of the two-socket servers based on Skylake-SP (SKL-SP), Broadwell, and Haswell CPU
architectures. At the same time, the four-socket server with SKL-SP processors achieves the highest sustained perfor-
mance of around 1.0–1.1 Tflop/s that corresponds to about 33% of the peak.

Keywords
Parallel programming, performance portability, shared-memory systems, heterogeneous stencils, EULAG model,
MPDATA, code parameterization, Skylake, Knights Landing

1. Introduction

Multi- and manycore architectures of emerging micropro-

cessor designs (Ang et al., 2014; Rico-Gallego et al., 2017)

have become increasingly complex, hierarchical, and het-

erogeneous (Malik et al., 2016; Rojek and Szustak, 2012;

Szustak et al., 2017). With the quick development of com-

puting platforms and software environments, application

developers are forced to contend with a variety of parallel

architectures. Since applications far outlive any computer

system, porting application codes has become a difficult,

time-consuming, and significant challenge for scientific

and commercial environments (Szustak et al., 2016; Unat

et al., 2014).

In this work, we take up the challenge of providing the

performance portability for a rather complex scientific

application. The application we study implements the Mul-

tidimensional Positive Definite Advection Transport Algo-

rithm (MPDATA; Smolarkiewicz, 2006) that contains a set

of stencil-based kernels with heterogeneous patterns.

Besides the GCR solver, MPDATA is the second major

part of the dynamic core of the EULAG (Eulerian/semi-

Lagrangian) geophysical model (Smolarkiewicz and Char-

bonneau, 2013; Wyrzykowski et al., 2012b). EULAG is an

established numerical model developed for simulating

thermo-fluid flows across a wide range of scales and phys-

ical scenario, including numerical weather prediction,

simulation of urban flows, turbulences, and ocean currents

(Kumar et al., 2016; Smolarkiewicz et al., 2016; Strugarek

et al., 2016).

Institute of Computer and Information Science, Faculty of Mechanical

Engineering and Computer Science, Czestochowa University of

Technology, Czestochowa, Poland

Corresponding author:

Lukasz Szustak, Institute of Computer and Information Science, Faculty of

Mechanical Engineering and Computer Science, Czestochowa University

of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland.

Email: lszustak@icis.pcz.pl

The International Journal of High
Performance Computing Applications
2019, Vol. 33(3) 534–553
ª The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342019828153
journals.sagepub.com/home/hpc

mailto:lszustak@icis.pcz.pl
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342019828153
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342019828153&domain=pdf&date_stamp=2019-02-24

The goal of our research is to investigate and improve

the process of porting the MPDATA applications for a wide

range of modern computing systems with the shared-

memory architecture. We target that the same piece of

code—from the user perspective—can be executed on dif-

ferent architectures with the high sustained performance.

In particular, the Intel processors are becoming the fast-

est growing choice for high performance computing in the

last years (see, e.g. https://top500.org). That is why

methods proposed in this work are evaluated on a variety of

Intel microarchitectures released in the last 5 years. We

choose the five Intel platforms, including four- and two-

socket ccNUMA servers based on Skylake (SKL), Broad-

well (BDW), Haswell (HSW), as well as Knights Landing

(KNL) chips.

In this article, we propose a parameterized adaptation

(or transformation) of the MPDATA application to

shared-memory systems. We expect to exploit the parallel

processing benefits of high performance systems in con-

junction with the adaptive application based on a new

version of reconfigurable code. In general, we propose

to provide the configurability of the MPDATA parallel

code to customize it to a given platform. The proposed

idea involves parameterizing characteristics of different

computing platforms. As a result, the adaptive MPDATA

has to follow along with a variety of hardware architec-

tural issues such as memory hierarchy, threading, vector-

ization, and their interaction.

In order to ensure performance portability among a vari-

ety of Intel processors, we deliver a set of parametric opti-

mization techniques for the MPDATA application. The first

technique—(3þ1)D decomposition—overcomes the mem-

ory and communication constraints by improving both cache

reusing and the data locality. The second one—islands-of-

cores strategy—allows us to take advantage of multi-socket

ccNUMA platforms by searching trade-off and synergy

between computations and communications. The third one

is responsible for the workload distribution across available

cores and threads, by providing efficient and flexible usage

of data parallelism and simultaneous multithreading (SMT).

In the fourth technique, a nonconventional process of syn-

chronization is implemented, which—in contrast to the bar-

rier approach—makes synchronization only between

interdependent threads. Finally, the main goal of the last

technique is to ensure the performance portability while

vectorizing MPDATA computations.

Furthermore, to make the high performance portable, we

provide a flexible tuning of the parameterized transforma-

tion of the MPDATA code. The main assumption is to

calibrate the proposed parametric optimization techniques

for a given computing platform, before the execution of a

specific numerical simulation. To meet this aim, we pro-

pose to develop an external mechanism—not included in

the MPDATA code—that produces the customized config-

uration of the MPDATA parallel code.

The proposed combination of the parametric optimization

techniques allows us to improve radically the efficiency of

MPDATA and perform computation with the high sustained

performance over all the tested platforms. The proposed

adaptation accelerates the MPDATA computation about

10�, 8�, 7�, 6�, and 9� for respectively four-socket ser-

ver with SKL CPUs, two-socket SKL, BDW, and HSW-

based servers, as well as the KNL processor. Furthermore,

high utilization rates of around 41–46% of the theoretical

peak performance are achieved for the two-socket servers.

At the same time, the four-socket platform reaches about

33% of the peak performance (1.0–1.1 Tflop/s), while a

single KNL processor gets 20% of the peak.

This article is organized as follows. Section 2 outlines

shared-memory systems based on Intel processors, while

Section 3 introduces the MPDATA application. Section 4

presents the idea of the parameterized adaptation of

MPDATA to shared-memory systems, while Section 5

reveals the parametric optimization techniques used in this

adaptation. Section 6 presents a four-step procedure for the

adaptive customization of the new MPDATA code. Section

7 describes the evaluation of the proposed approach using

five servers with various Intel processors. Section 8 dis-

cusses related works, while Section 9 concludes the article.

2. Introduction to shared-memory systems
based on Intel processors

In this work, we use five computing platforms based on

various Intel microarchitectures: one four-socket server

with SKL-SP architecture, three two-socket servers with

SKL-SP, BDW, and HSW architectures, and one platform

with the KNL processor. Table 1 summarizes parameters of

these platforms.

Among parameters that characterize every platform are:

frequency, numbers of sockets and cores/threads, SIMD

type, number of memory controllers, as well as details of

the memory hierarchy. All the platforms feature the out-of-

order execution model, and excluding the HSW-based ser-

ver, the rest of them support the SMT using either two

threads per core for Intel Xeon CPUs or four threads per

core for KNL.

For all platforms, each core is equipped with 64 KB of

L1 cache. The SKL-SP processors have a larger L2 cache,

and smaller non-inclusive L3 cache in comparison with

BDW or HSW CPUs (Intel, 2018). The key difference is

that instead of copying data both to L2 and L3 caches, data

are loaded directly into L2 cache in the novel SKL-SP

CPUs (Intel, 2018). At the same time, the KNL processor

includes 32 tiles (Jeffers et al., 2016), each of which con-

tains two cores that share 1 MB of L2 cache. All L2 caches

of KNL are fully coherent. In addition, the KNL processor

is equipped with 16 GB of high bandwidth, on-package

MCDRAM memory that offers a much higher bandwidth

than the traditional DDR memory.

Whereas BDW and HSW cores are connected by a

single ring bus, cores of SKL-SP and tiles of KNL com-

municate through the 2D mesh interconnection (Intel,

2018; Jeffers et al., 2016). Furthermore, each platform

Szustak and Bratek 535

https://top500.org

consists of at least two memory controllers per processor

(four for KNL, two for other processors). These control-

lers are either placed on opposite ends of the ring (HSW

and BDW) or evenly placed on the mesh (SKL-SP and

KNL) (Intel, 2018; Jeffers et al., 2016). The expected

consequence is that some cores may feature a higher

latency while trying to access data via the memory con-

troller placed on the other end.

The studied Intel processors support legacy and modern

vector instruction sets, from 64-bit Multimedia Extensions

(MMX) to the new 512-bit AVX-512 set (Eltablawy and

Vladimirov, 2015). SKL and KNL cores use 512-bit regis-

ters, while BDW and HSW cores support 256-bit vectors.

The most notable new feature of AVX-512 compared to

AVX/AVX2 is the 512-bit vector register width, which is

twice the size of AVX/AVX2 registers. Depending on the

architecture, all the tested platforms are able to operate on

vectors of up to eight double precision floating point num-

bers (Eltablawy and Vladimirov, 2015; Intel, 2018).

Each core of the considered platforms is equipped with

different kind and number of floating point units (Intel,

2018) that typically are able to start up to two scalar (or

vector) floating point instructions at every next cycle. For

example, a SKL-SP core delivers a throughput of two scalar

(or two vector) add instruction per every cycle because it

has two FP Add Execution Units connected to ports 0 and 5

(Intel, 2018).

The processors are clocked by the base frequency listed

in Table 2. This frequency is used only for non-SIMD

workloads, while for workloads heavy in AVX-512 or

AVX2, the CPU reduces the clock frequency (Eltablawy

and Vladimirov, 2015) (see Table 1). At the same time, all

the tested processors are capable of frequency scaling

thanks to the Intel Turbo Boost technology, where the max-

imum turbo frequency depends on the type and intensity of

workload, as well as the number of active cores (Intel Xeon

Processor, 2017, 2018).

Summarizing, the studied platforms offer the theoretical

peak performance (Eltablawy and Vladimirov, 2015) from

492 to 3046 Gflops/s for double precision floating point

operations. The presented values of the peak performance

take into account the usage of SIMD vectorization, base

SIMD frequency, and throughput for the non-fused

multiply-add type of instructions. For the fused multiply-

add instruction, all platforms offer twice more of the peak

performance.

3. Overview of MPDATA

The MPDATA application implements a general approach

to integrating the conservation laws of geophysical fluids

on micro-to-planetary scales (Smolarkiewicz and Margo-

lin, 1998). The MPDATA algorithm enables solving the

continuity equation describing the advection of a nondiffu-

sive quantity C in a flow field (Rosa et al., 2015), namely

@C
@t
þ divðVCÞ ¼ 0

Table 2. Percentage of extra elements for the MPDATA domain
of size 1024� 512� 64.

of subdomains 1 2 4 8
% of extra elements 0.00 0.25 0.74 1.73

MPDATA: Multidimensional Positive Definite Advection Transport
Algorithm.

Table 1. Specification of computing platforms.

Platform A B C D E

Computing resources

4 � Intel Xeon
Platinum 8180
(4 � SKL-SP)

2 � Intel Xeon Gold
6148 (2 � SKL-SP)

2 � Intel
Xeon E5-2697v4

(2 � BDW)

2 � Intel Xeon
E5-2697v3
(2 � HSW)

1 � Intel Xeon Phi
7250F (1 � KNL)

Base freq. [GHz] (SIMD frequency) 2.5 (1.7) 2.4 (1.6) 2.3 (2.0) 2.6 (2.2) 1.4 (1.2)
Sockets 4 2 2 2 1
Threads 4� 56 2� 40 2� 36 2� 14 1� 272
Cores 4� 28 2� 20 2� 18 2� 14 1� 68
SMT threads 2 2 2 1* 4
SIMD AVX-512 AVX-512 AVX2 AVX2 AVX-512
L2 [MB] 4� 28� 1 2� 20� 1 2� 18� 0:25 2� 14� 0:25 68� 0:5
L3 [MB] 4� 38:5 2� 27:5 2� 45 2� 35 —
Memory 512 GB

DDR4-2666
192 GB

DDR4-2666
128 GB

DDR4-2400
128 GB

DDR4-2133
16 GB MCDRAM
96 GB DDR4-2400

Memory control. 4� 2 2� 2 2� 2 2� 2 1� 4
Peak perf. [Gflop/s] Scalar 560 192 165 145 190

SIMD 3046 1024 576 492 1305
Max. SIMD gain 5.4� 5.3� 3.5� 3.4� 6.8�

Source: https://ark.intel.com.
SKL-SP: Skylake-SP; BDW: Broadwell; HSW: Haswell; KNL: Knights Landing; SMT: simultaneous multithreading.
*Intel HT is disabled.

536 The International Journal of High Performance Computing Applications 33(3)

https://ark.intel.com

where V is the velocity vector. The algorithm is positive

defined, and by appropriate flux correction (Smolarkiewicz

and Margolin, 1998) can be also monotonic. It is a very

important feature for the advection of positive definite vari-

ables such as specific humidity, cloud water, rain, snow,

aerosol particles, and gaseous substances. For a detailed

description of the MPDATA mathematical scheme, the

reader is referred to the work of Smolarkiewicz and Char-

bonneau (2013) and Smolarkiewicz and Margolin (1998).

MPDATA corresponds to the group of nonoscilatory

forward-in-time algorithms (Szustak et al., 2015), and is typi-

cally used for long-running simulations executing several

thousand time steps. In this article, we consider solving

three-dimensional (3D) problems, when MPDATA is defined

in a 3D domain of size n� m� l according to i-, j-, and k-

dimensions. Moreover, since the accuracy of computation

plays a key role for MPDATA, these simulations usually are

performed using the double precision floating point format.

The general execution scheme for the MPDATA appli-

cation is presented in Figure 1. Every MPDATA time step

operates on five input 3D matrices (arrays), and returns one

output 3D array that is used in the next step. Calculating

outcomes of a single time step requires intermediate com-

putations that include 17 stencil kernels. In general, these

kernels depend on each others, as the outcomes of prior

kernels are usually inputs for the subsequent ones. Figure

1(a) illustrates data dependencies between MPDATA ker-

nels. Each kernel is a stencil code that updates elements of

its 3D output array, according to a specific pattern.

Although every kernel features a specific stencil pattern,

the shape and size of these patterns are quite similar. Typi-

cally, such a similarity is observed for a group of three

neighbor kernels, where the same shape is slightly trans-

formed in three dimensions. Figure 1(b) shows an example

of three stencil patterns with the same shape; they corre-

spond to kernels 9, 10, and 11.

In a naive, non-optimized implementation of the

MPDATA application, the consecutive MPDATA kernels

are executed sequentially, one by one, where each kernel is

processed in a parallel way using OpenMP. Every

MPDATA kernel reads a required set of matrices from the

main memory and writes results to the main memory after

computation. The consequence is the significant traffic to

the main memory. For example, a single iteration of the

innermost loop for the fourth kernel (K4) reads eight dou-

ble precision elements from five input arrays, then per-

forms seven floating point operations, and finally writes

one value to xOut-array. Thus, the operational (arithmetic)

intensity for K4 is ð7flopsÞ=ð9� 8bytesÞ ¼ 0:097flop

byte
.

We use the Intel Advisor Roofline Analysis tool (Jeffers

et al., 2016; Vladimirov et al., 2015) to generate the com-

putational profile of the MPDATA application. This cache-

aware analysis addresses all levels of the memory/cache

hierarchy, and enables us to identify high-impact, under-

optimized critical regions of a given code. Figure 2

o

o

Kernel 17

Kernel 16Kernel 15Kernel 14

Kernel 13Kernel 12

Kernel 11Kernel 10Kernel 9

Kernel 4

Kernel 3Kernel 2Kernel 1

Kernel 6

Kernel 8

Kernel 5

Kernel 7

(b)

E
x
ec

u
ti

o
n
 o

f

su
b
se

q
u
en

t
ti

m
e

st
ep

s

(a)

o
j-dim

i-dim

k-dim

o

out: v1

in: x

K
er

n
el

 9

out: x

in: x, u1, u2, u3, h

o
j-dim

i-dim

k-dim

out: v2

in: x

K
er

n
el

 1
0

out: v3

in: x

o
j-dim

i-dim

k-dim

K
er

n
el

 1
1

Figure 1. Computational structure for MPDATA application: (a) graph of data dependencies between MPDATA kernels and (b)
examples of heterogeneous stencil patterns for MPDATA kernels. MPDATA: Multidimensional Positive Definite Advection Transport
Algorithm.

DP Vector Add Peak
514 [Gflop/s]

DDR4

51
4

Pe
rf

or
m

an
ce

 [
G

flo
p/

s]

L1
L2 L3

Arithmetic Intensity [flop/byte]

45
5 K4

0.16
0.06

0.09
0.04

0.21
0.39

3.65

L1 = 12298 [GB/s]
L2 = 3145 [GB/s]
L3 =1323 [GB/s]
DDR4 = 141 [GB/s]

Peak Bandwidth:

Figure 2. Intel Advisor Roofline plots derived for platform with
two Intel Xeon E5-2697v4 CPUs when performing parallel com-
putations for MPDATA domain of size 256 � 256 � 64.
MPDATA: Multidimensional Positive Definite Advection Trans-
port Algorithm.

Szustak and Bratek 537

illustrates a roofline chart determined for the platform with

two BDW CPUs when performing parallel computations

for the MPDATA domain of size 256� 256� 64. The

arithmetic intensity for the MPDATA kernels is in the

range from 0.06 to 0.21. The Intel Advisor tool places a

dot for every MPDATA kernel (loop) in the roofline plot

(Figure 2). Most of the loops are around the main memory

roof although they are vectorized. Thus, this roof represents

a performance bottleneck that has to be addressed by better

utilizing the cache memory.

4. Parameterized adaptation of MPDATA
to shared-memory systems: General
concept

In this work, to achieve the portable high performance, we

propose a flexible tuning based on a parameterized trans-

formation of the MPDATA code. We deliver a new para-

meterized adaptation of the MPDATA application to

shared-memory systems, which enables us to provide the

configurability of the MPDATA parallel code in order to

customize it to a given platform. As a result, the adaptive

MPDATA has to follow along with a variety of the hard-

ware architectural issues such as memory hierarchy, multi-/

manycore, threading, vectorization, and their interaction.

The key point is providing a suitable parameterization of

the parallel MPDATA code that takes into account the

interaction of application with hardware for a variety of

shared-memory systems. In order to ensure the perfor-

mance portability across various computing platforms, we

develop the following parametric optimization techniques

for the MPDATA application:

� (3þ1)D decomposition of MPDATA—the main goal

of this approach is to overcome the memory and

communication constraints for a variety of shared-

memory systems by improving both cache reusing

and the data locality.

� Partitioning cores into independent work teams—in

particular, this technique allows adapting the

MPDATA application to take advantages of multi-

socket platforms based on the ccNUMA architecture

by searching trade-off and synergy between compu-

tations and communications.

� Data parallelism and grouping SMT threads into

work groups—the purpose is to distribute the

MPDATA workload across both physical and logical

cores, in a flexible and efficient way.

� New strategy for synchronization—the main idea is

to synchronize only interdependent threads instead of

using the barrier approach that, in contrast to the

developed approach, synchronize all threads.

� Vectorization—the last technique is responsible for

ensuring the performance portability for the vector-

ization of MPDATA computations.

5. Parameterized adaptation of MPDATA:
Parametric optimization techniques

5.1. (3þ1)D decomposition of MPDATA

Our previous works (Szustak et al., 2014a, 2015) outlined

the adaptation of MPDATA to KNC coprocessors, the first

generation of the Intel MIC architecture. The aim was to

better exploit the cache hierarchy by reducing the data

traffic between the main memory and cache hierarchy.

To reach this goal, we proposed to reorganize MPDATA

computations using a mixture of the loop fusion and loop

tiling optimization techniques. As a result, we developed a

new strategy of workload distribution for the MPDATA

application, which is called (3þ1)D decomposition of

MPDATA.

The main idea of the proposed decomposition is to elim-

inate accesses to the main memory related to MPDATA

intermediate computations (for all kernels). Our intention

is to keep intermediate outcomes of MPDATA computa-

tions in the cache hierarchy within every time step—with-

out transferring them to the main memory. As a result, the

main memory traffic corresponds precisely to transfers

related to input and output data (six arrays for every

MPDATA time step). Since intermediate results are stored

in the cache only, the proposed approach significantly

reduces the main memory consumption, by storing 6 arrays

of size n� m� l, instead of 21 such arrays.

The idea of the (3þ1)D decomposition is depicted in

Figure 3, which for simplicity shows solving an 1D prob-

lem with two stencil kernels. In this example, kernel_1

(K1) is executed before kernel_2(K2) (Figure 3(a)). In

the new version, the original execution scheme is reorga-

nized using the combination of the loop fusion and loop

tiling techniques (Figure 3(b)). As a result, the computa-

tional domain is decomposed into blocks of computa-

tions—the consecutive blocks are processed sequentially,

one by one, but each block executes all kernels. In this way,

we are able to keep outcomes of kernel K1 in the cache

memory only. To achieve this, every block has to be

extended by extra computations because of data dependen-

cies between kernels (Figure 3(b)).

This overhead can be reduced or even avoided (Szustak

et al., 2015) by leaving partial results in cache when execut-

ing successive blocks. Since the extra computations, which

correspond to ghost regions of kernels and data arrays, are

repeated within adjacent blocks, we propose to keep in

cache some partial results of a given block to be used for

the next block (Figure 3(c)). As a result, every block is

extended by ghost regions, but only some of them have

to be calculated within this block, while the others come

from the previous block. This strategy splits execution of a

block into two phases: (i) computation phase and (ii) phase

of leaving/keeping partial results in cache. Its implementa-

tion requires maintaining the right order of processing

blocks along one of the three dimensions, and mapping

partial results onto the cache.

538 The International Journal of High Performance Computing Applications 33(3)

In order to implement the (3þ1)D decomposition of

MPDATA, its domain is partitioned into a set of blocks each

of size nB� mB� lB that allows us to keep all intermediate

results in the cache memory (Figure 4(a)). The consecutive

blocks are processed sequentially, one by one, where every

block includes all MPDATA kernels (Figure 4(b)). For each

block, computations are performed on corresponding

chunks of intermediate MPDATA arrays, returning an ade-

quate part of the output array. In consequence, each chunk

of a given MPDATA kernel has to be expanded by ghost

regions along i-, j-, and k-dimensions. The final size of a

given chunk is determined individually for each kernel tak-

ing into account data dependencies between kernels (Szus-

tak et al., 2014b, 2015). As a result, a given r th MPDATA

kernel executes computations on expanded chunks of size

ðai
r þ nBþ bi

rÞ � ðaj
r þ mBþ bj

rÞ� ðak
r þ lBþ bk

r Þ.
As noticed earlier, since the extra computations are

repeated for two adjacent blocks, we can reduce or avoid

this overhead by leaving/keeping in the cache partial out-

comes of a given block to be used in the next one (see

Figure 3(c)). This strategy imposes the execution order for

MPDATA blocks along a certain dimension. This choice

allows us to avoid extra computations related to one of the

three ghost regions of a given block. Since the stencil pat-

terns of MPDATA kernels are identical along all three

dimensions, this method can be applied successfully for

any of the three ghost regions. At the same time, the key

point is development of an efficient mechanism for map-

ping partial results onto the cache space. To reach this aim,

the mapping has to be implemented for contiguous memory

regions. As a result, the extra computations along i-dimen-

sion are fully avoided.

This choice also creates opportunities for reducing the

extra computations along the other two dimensions. Here

the key point is selecting an appropriate shape of MPDATA

blocks. To minimize the total amount of extra computa-

tions, we propose to define the size nB as small as possible

(minimum nB ¼ 1), and set the other two sizes mB and lB

as large as possible to keep all necessary data in cache. It is

worth noticing that extra computations can be avoided at all

if mB ¼ m, lB ¼ l, and the cache capacity of a given device

is large enough to keep all required data for a given size nB.

Otherwise, the MPDATA block is split into q ¼ 2; 3; 4; :::
smaller blocks of size nB� mB

q
� lB until each block is

small enough to keep all data in cache. Naturally, in this

case it is not possible to avoid extra computations, and their

amount grows up with increasing q.

5.2. Islands-of-cores strategy: Partitioning cores into
independent work teams

In our previous article (Szustak et al., 2017), we have taken

up the challenge of harnessing the heterogeneous nature of

SMP/NUMA communications for the MPDATA applica-

tion. We proposed the islands-of-cores strategy that

exposes the correlation between computation and commu-

nication for stencils, and enables the efficient management

of trade-off between computation and communication

costs, in accordance with features of SMP/NUMA systems.

In this article, we propose to adopt this strategy for shared-

memory platforms that reveal physical groups of cores as it

is in ccNUMA and KNL architectures.

The idea of the islands-of-cores strategy is illustrated in

Figure 5. An example of 1D stencil computations with two

kernels K1 and K2 is shown in Figure 5(a), while Figure

5(b) and (c) presents two general scenarios for the

(a)

(b) kernel 1

kernel 17

kernel 2

Figure 4. (3þ1)D decomposition of MPDATA: (a) partitioning
MPDATA domain into set of blocks and (b) execution of all 17
kernels within every block. MPDATA: Multidimensional Positive
Definite Advection Transport Algorithm.

a b c d e f g h ia b c d e f g h i

k2: out[i]=A[i-1]*A[i+1]

a b c d e f g h ia b c d e f g h i

k1: A[i]=in1[i]*in2[i]

E
x
ecu

tio
n
 o

rd
er

(a)

Execution order

block i

dk1: c

k2:

gk1: fg

k2:

block i+1
P1 P2 P1 P2

block i-1

k2:

ak1:

P1 P2

P2 - Phase of computation

P1 - Phase of keeping partial outcomes in cache

(c)

block i

k1: c

k2:

block i-1

k2:

dk1: k1: fg

e f

d e f

h i

g h ia b c

b c d

d e f

d e fa b c

a b c g h i

g h ik2:

block i+1

Execution order

(b)

... Extra computation

Figure 3. Idea of (3þ1)D decomposition of stencil computations:
(a) an example of 1D problem with two stencil kernels; (b) par-
titioning the computational domain into set of blocks using a
mixture of loop fusion and loop tiling; and (c) strategy of leaving
partial outcomes in cache memory.

Szustak and Bratek 539

parallelization of computations using two interconnected

processors.

The first scenario (Figure 5(b)) illustrates the inter-

processor communication due to data dependencies. These

implicit data transfers are implemented through the cache

hierarchy; they take place on borders of computation sub-

domains distributed across processors. In particular, the

output element c computed in CPUA by the kernel K1 is

transferred to CPUB in order to compute element d in the

kernel K2. At the same time, the element d obtained in

CPUB by the first kernel is copied to CPUA to compute

element c by the second kernel. Furthermore, the synchro-

nization point is required to ensure the correctness of par-

allel computations. When using a single processor, this

traffic is restricted to the cache hierarchy of this CPU.

However, in the case of the multiprocessor server, the

required data are implicitly transferred between caches of

neighbor processors through QPI or UPI links (Intel, 2018).

The second scenario (Figure 5(c)) permits us to avoid

exchanging data between processors at the cost of extra

computations. Instead of transferring the elements c and

d computed by the first kernel, let both processors compute

them once more. In consequence, CPUA computes one

extra element d, and CPUB delivers the additional element

c within the kernel K1. As a result, like independent

islands, both processors are able to perform computations

independently of each other within every time step, at the

cost of computing some amount of extra elements.

To sum up, the first scenario performs less computations

but requires more data traffic, while the second one allows

us to replace the implicit data traffic between processors by

replicating some computations. Thus, the second scenario

seems to fit perfectly to reduce inter-processor communi-

cations between caches in a ccNUMA shared-memory sys-

tem. At the same time, the first scenario is well suited to be

implemented inside each processor, where a more efficient,

local memory hierarchy is used to implement the data traf-

fic between cores.

Therefore, the key point is to customize the islands-of-

cores strategy to the MPDATA application, which features

a definitely more complex computational structure than the

example shown in Figure 5. To implement this strategy for

ccNUMA architectures, the abstraction of the MPDATA

islands of cores is applied across P interconnected proces-

sors of a given platform. As a result, the MPDATA domain

is partitioned into P subdomains that have to be mapped

onto P processors. Each processor corresponds now to a

work team of cores (MPDATA island), and these work

teams perform the following activities in each time step:

1. All work teams share input data, utilizing the first-

touch policy with parallel initialization.

2. At the cost of extra computations, each team inde-

pendently executes the set of blocks within its sub-

domain, following the (3þ1)D decomposition.

3. After completing the whole time step, each team

returns outcomes to the main memory. Addition-

ally, all teams synchronize their operations, in

order to ensure the correctness of input data for the

next time step.

Assuming that every team consists of the same number

of cores, the MPDATA domain is decomposed into uni-

form subdomains of size nP� mP� lP, where the total

number of subdomains is equal to the number of physical

teams of cores. Only 1D variants of partitioning the

MPDATA domain are considered. The reason for avoiding

2D and 3D partitionings is that data layouts of all the

MPDATA arrays allow performing transfers of contiguous

areas of memory only along the first dimension. In conse-

quence, we expect too high communication overheads

when the MPDATA domain is partitioned across two or

three dimensions.

Each work team is able to perform computations inde-

pendently of other teams at the cost of extra computation.

In consequence, as shown in Figure 5(c), every MPDATA

subdomain has to be extended by ghost regions. More spe-

cifically, each kernel is extended by ghost regions of which

the sizes are determined individually based on data depen-

dencies of kernels. Since the MPDATA kernels feature

heterogeneous stencil patterns, the final sizes of ghost

regions of various kernels differ from each other. Our pre-

vious articles (Szustak et al., 2014b; Wyrzykowski et al.,

2014) discussed how dependencies between MPDATA

kernels affect both the sizes of ghost regions and final

amount of extra elements. As an example, Table 2 presents

how the total number of extra elements increases with the

a b c d e f

k2: out[i]=A[i-1]*A[i+1]

a b c d e fc

k1: A[i]=in1[i]*in2[i]
(a) E

x
ecu

tio
n
 o

rd
er

(c)

k2:

k1:

a b c d e f

a b c d e f

CPU_A CPU_B

d c

E
x
ecu

tio
n

 o
rd

er

... Extra computation

(b)

k2:

k1:

a b c d e f

a b c d e f

CPU_A CPU_B E
x
ecu

tio
n

 o
rd

er

Data traffic
between processors

Sync.

Figure 5. Idea of islands-of-cores strategy: (a) example of stencil
computations with two kernels; (b) parallelization with implicit
data transfers between processors; and (c) avoiding data transfers
and synchronization, at the cost of extra computations. Source:
Szustak et al. (2017). MPDATA: Multidimensional Positive Defi-
nite Advection Transport Algorithm.

540 The International Journal of High Performance Computing Applications 33(3)

number of subdomains for the 1D partitioning of domain of

size 1024� 512� 64.

5.3. Data parallelism and grouping threads into work
groups

Assuming the combination of the (3þ1)D decomposition

and islands-of-cores strategy, the MPDATA domain is

decomposed into uniform subdomains (islands), then each

subdomain is partitioned into a set of blocks following the

(3þ1)D decomposition, and finally this set is executed by

all the physical cores assigned to the corresponding

MPDATA island. As a result, every MPDATA block of

size nB� mB� lB is implemented in parallel.

The important point here is to distribute computations of

each MPDATA block across both cores/threads and vector

units, in portable and efficient way. To reach this aim, we

propose to: (i) exploit data parallelism across i- and j-

dimensions, based on distributing data across available

cores/threads; (ii) incorporating the vectorization (see the

next subsection) along k-dimension.

Since the typical shape of blocks assumes that

nB << mB with a relatively small value of nB (even

nB ¼ 1), the MPDATA block is partitioned evenly into a

set of subblocks of size nB� mB
CN
� lB, where CN is the

number of physical cores assigned to a given work team

(MPDATA island). Each core of a given team executes

computations related to all MPDATA kernels performed

on chunks of corresponding data arrays. The data paralle-

lism corresponds to distributing data across cores of a team

along j-dimension. Since the data traffic takes place only

between adjacent MPDATA subblocks, the adjacent sub-

blocks are mapped onto cores that are physically closely

connected to each other, in order to reduce the communi-

cation paths. The scheme of the proposed distribution is

presented in Figure 6(a).

The goal of this work is to minimize data transfers not

only between cores, but also inside a single core, by explor-

ing the possibilities of running multiple threads within a

single core using SMT. Therefore, we propose to group

multiple threads into work groups in a way that permits

executing a single MPDATA subblock in a compact man-

ner. The main rationale is to increase reusing of data pro-

cessed by a group of S > 1 threads.

We distinguish three scenarios for mapping SMT

threads onto MPDATA subblocks; they are illustrated in

Figure 6(b) to (d). In the first scenario, each MPDATA

subblock is partitioned into a set of parts of size

S � 1� l, and then S threads are parallelized inside every

part. This scenario is directly applied in the case of nB � S,

as it is shown in Figure 6(b), where S ¼ 4. However, this

scenario is not applicable if nB ¼ 1. In this case, a single

MPDATA subblock is decomposed into parts of size

1� S � l that are parallelized using a work group of S

threads. An example of this scenario is presented in Figure

6(c). The last scenario is designed for nB > 1, when

nB < S. Figure 6(d) shows this scenario for nB ¼ 2, and

S ¼ 4. In this example, every subblock is split into parts of

size 2� 2� l, which are executed in parallel by four

threads of a given work group.

mB

C1 CCN

nB

lB

Δm=mB
CN

(a)

11111111

mB

C1 CCN

4

nB

lB

4

T1,1

T1,2

T1,3

T1,4

T1,1

TCN,1

TCN,2

TCN,3

TCN,4

TCN,1

Group of
threads for

Core1

(b)

1 11

C1 CCN

4 4

lB

nB=1
mB

4 4
Δm

T1,1T1,2T1,3T1,4T1,1

Group of
threads for

Core1

Group of
threads for

CoreCN

TCN,2TCN,3TCN,4TCN,1TCN,1

(c)
C1 CCN

lB

nB=2
2

mB
2 2 2

T1,3 T1,4

T1,1T1,2T1,1

T1,3

TCN,2

TCN,3 TCN,4

TCN,1
TCN,3

TCN,1

Group of
threads for

CoreCN
Group of

threads for
Core1

(d)

ΔmΔm=mB
CN

Δm=mB
CN Δm

mB
CNΔm=

Δm

Group of
threads for

CoreCN

Figure 6. Data parallelism for MPDATA: (a) distributing MPDATA block of size nB� mB� lB across CN cores; strategy for grouping
threads into work groups for S ¼ 4 with nB � 4 (b), nB ¼ 1 (c), and nB ¼ 2 (d). MPDATA: Multidimensional Positive Definite Advection
Transport Algorithm.

Szustak and Bratek 541

In general, the last two scenarios can be used instead of

the first one. However, the stencil nature of MPDATA

kernels, as well as dependencies between them, make the

first scenario the best choice because of the highest rate of

data reusing. The proposed approach allows us to define

any number of threads per a single group, but this number is

constrained by the number of logical threads available for a

given platform.

Using the OpenMP standard (OpenMP, 2015) to imple-

ment MPDATA gives programmers a simple and rather

flexible interface for developing portable parallel applica-

tions. In particular, OpenMP offers a useful interface to

control the thread affinity (OpenMP, 2015). However, the

complexity of the proposed adaptation makes it impossible

to implement efficiently the multithreading parallelization of

MPDATA using the OpenMP constructs such as #pragma

omp for. So instead, we develop a proprietary scheduler

responsible for the workload distribution and data paralle-

lism. Following the proposed adaptation, our scheduler

explicitly define the scope of work for each thread.

5.4. New strategy for synchronization

Because of data dependencies between the MPDATA ker-

nels, the parallelization of an MPDATA block requires

providing the synchronization of threads. The general

scheme of synchronizations for MPDATA computations

is presented in Figure 7. In particular, four synchronization

points are necessary within each MPDATA block, to

ensure the correctness of executing subsequent kernels.

Moreover, following the three optimization techniques

already presented in this section, each work team executes

independent computations within every time step, but all

teams have to synchronize their works after each time step.

Therefore, two synchronization levels have to be con-

sidered: inside every team (first level) and between all

teams (second level). Within a certain time step, the

amount of synchronization points depends on the number

of MPDATA blocks. In consequence, a huge number of

synchronization points is expected for the first level. Its

efficiency becomes critical for the overall performance. For

this reason, in our previous work (Szustak, 2018) we pro-

posed a novel strategy for the data flow synchronization in

shared-memory systems. The main idea of this strategy is

to synchronize only interdependent threads instead of using

the barrier approach that—in contrast to the proposed strat-

egy—synchronize all threads (see also Laccetti et al.,

2016). An inherent part of this strategy is revealing the

scheme of thread interrelationships for a given application.

Implementing this strategy for the MPDATA applica-

tion needs to determine the inter-thread traffic, by consid-

ering the dependencies between parallel computations

inside every MPDATA block. It can be concluded that the

inter-thread data traffic occurs only between threads pinned

to adjacent physical cores. In fact, threads assigned to a

given physical core Ci depend only on outcomes computed

by threads pinned to the core Ci�1 on the left side, as well as

to threads assigned to the core Ciþ1 on the right side (Figure

6). At the same time, threads assigned to the cores Ci�1 and

Ciþ1 do not depend on each other.

Unlike the barrier approach, we propose to synchronize

only interdependent cores/threads. To reach this aim, we

define ðCN � 1Þ synchronization groups of threads that

correspond to the subsequent pairs of adjacent cores, where

a certain i th group includes all threads assigned to the cores

Ci�1 and Ci, while the next ðiþ 1Þ th group encompasses

threads pinned to the cores Ci and Ciþ1. As a result, all

threads assigned to a core are now affiliated to two syn-

chronization groups on its left and right sides. The excep-

tions to this rule are the first and last cores that are affiliated

only to a single group. The total number of threads per

synchronization group is equal to 2� S. This strategy

allows us to reduce the cost of synchronization since each

group includes radically less cores/threads to synchronize

than the barrier approach. Figure 8 illustrates interrelation-

ships between cores/threads in the data flow synchroniza-

tion strategy used for MPDATA. Based on this strategy, a

data flow synchronization algorithm was also developed

(Szustak, 2018), and successfully adopted to the

application.

5.5. Vectorization

The next goal of this work is to ensure the performance

portability for vectorization of MPDATA computations. In

general, there exists a wide range of alternative methods

and tools for implementing vectorization (Eltablawy and

MPDATA domain
M

PD
AT

A
su

b-
bl

oc
ks

K17:

K14:

Sync. point

Sync. point

M
PD

AT
A

su
b-

bl
oc

ks

K7:

K5:

Sync. point

Sync. point

M
PD

AT
A

su
b-

bl
oc

ks

K4:

K1:

MPDATA block

M
PD

AT
A

su
b-

bl
oc

ks

K17:

K14:

Sync. in team

Sync. in team

M
PD

AT
A

su
b-

bl
oc

ks

K7:

K5:

Sync. in team

Sync. in team

M
PD

AT
A

su
b-

bl
oc

ks

K4:

K1:

MPDATA block

MPDATA sub-domain

Ex
ec

ut
io

n
of

 s
ub

se
qu

en
t

bl
oc

ks

M
PD

AT
A

su
b-

bl
oc

ks

K17:

K14:

Sync. point

Sync. point

M
PD

AT
A

su
b-

bl
oc

ks
K7:

K5:

Sync. point

Sync. point

M
PD

AT
A

su
b-

bl
oc

ks

K4:

K1:

MPDATA block

M
PD

AT
A

su
b-

bl
oc

ks

K17:

K14:

Sync. in team

Sync. in team

M
PD

AT
A

su
b-

bl
oc

ks
K7:

K5:

Sync. in team

Sync. in team

M
PD

AT
A

su
b-

bl
oc

ks

K4:

K1:

MPDATA block

MPDATA sub-domain

Ex
ec

ut
io

n
of

 s
ub

se
qu

en
t

bl
oc

ks

Synchronizations between teams

Figure 7. Synchronization scheme for a single time step of
MPDATA. MPDATA: Multidimensional Positive Definite Advec-
tion Transport Algorithm.

542 The International Journal of High Performance Computing Applications 33(3)

Vladimirov, 2015; Jeffers et al., 2016), that differ in terms

of complexity, flexibility, and portability. Two main

approaches to take advantages of vector registers and vec-

torization benefits can be distinguished (Eltablawy and

Vladimirov, 2015): (i) manual vectorization using assem-

bly and/or intrinsic functions and (ii) automatic vectoriza-

tion by the compiler.

Although the first method is more controllable, it lacks

the portability, which in fact is the main goal of this work.

In contrast, the automatic vectorization provides a strong

basis to ensure compatibility of the code with various

architectures (Jeffers et al., 2016). The compiler detects

operations in the program that can be executed in parallel,

and then converts sequences of operations into parallel

vector operations. Furthermore, if the compiler is able to

vectorize a code for an older vector instruction set, only a

recompilation is necessary to generate an executable pro-

gram for a new processor architecture (Eltablawy and

Vladimirov, 2015). As a result, the compiler-based auto-

matic vectorization seems to be the most convenient

method for this work.

The challenge is to specify the process of vectorization

entirely and correctly, so that a compiler will make vector-

ization automatically. To reach this aim, we use OpenMP

SIMD directives. The main advantages of using these

directives is the ability for code portability between not

only different microarchitectures but also compilers

(OpenMP, 2015). OpenMP SIMD directives can force the

compiler to generate the vectorized code, but it is the pro-

grammer’s responsibility to ensure that there are no limita-

tions which might impact the correctness of computations.

Furthermore, the compilation commands have to be

properly adjusted for a given microarchitecture to support

the full use of vector hardware. For example, for Intel

compilers 18.x the automatic vectorization is enabled at

the default optimization level -O2, but two more compiler

options -xCore-AVX512 and -qopt-zmm-usa-

ge¼high are necessary for generating codes for the newest

Intel Xeon Scalable Performance (SKL-SP) CPUs (Elta-

blawy and Vladimirov, 2015).

To make the automatic vectorization more efficient, the

Intel Advisor tool (Jeffers et al., 2016) is used to help

MPDATA reach the full performance potential of modern

processors. This tool allows us to find what is blocking

vectorization for various computing platforms. Addition-

ally, as the compiler does not make all the work for the

automatic vectorization (Jeffers et al., 2016), in this article

we propose how to overcome all issues that affect the

effective vectorization of MPDATA. In practice, the inner-

most loop is commonly recommended as a target for vec-

torization (Jeffers et al., 2016; Vladimirov et al., 2015). The

efficiency of vectorization relies on the ability to load mul-

tiple array elements into wide vector register, but these

elements have to reside in memory contiguously to opti-

mize the performance of computations.

For MPDATA, the data layout used for storing arrays

compels us to perform vectorization along k-dimension of

MPDATA blocks, to provide the contiguity of memory

accesses. As a result, vectorization corresponds indeed to

the innermost loops of MPDATA kernels. In addition, these

loops are manually marked up with #pragmaompsimd, in

order to force the compiler to vectorize the correct loop of

kernels. Furthermore, if necessary, we align the range of

loop index (value of parameter l) for each innermost loop to

be divisible by the vector length, in order to avoid the not

vectorized, remainder part of loops. For a given execution,

this range is defined as a constant variable to inform the

compiler when a loop will exit to safely push multiple

iterations for executing by the vector processing unit.

One of the key methods to aid the efficient vectorization

is to perform data alignment and assist the compiler to

recognize aligned data (Eltablawy and Vladimirov, 2015;

Jeffers et al., 2016). We ensure alignment using the dedi-

cated memory allocation functions (see Jeffers et al., 2016),

and telling the compiler that data are aligned through

#pragma omp simd aligned(list[: linear-

step]). As a result, the innermost loops of MPDATA

kernels will be able to start operating on data addresses

aligned to specific byte boundaries. However, codes of

some kernels will still include accesses to both aligned and

unaligned data that are produced as an effect of irregula-

rities in the stencil patterns.

In general, there are a lot of loop features that potentially

can reduce the efficiency of vectorized code, or even prevent

vectorization (Jeffers et al., 2016). This leads to some restric-

tions on the types of loops that can be vectorized efficiently.

An important example are loops with the read-after-write

dependency (see Listing 1) that appears if a variable is writ-

ten in one iteration and read in a subsequent one. In order to

solve this issue, which occurs for two MPDATA kernels, we

propose to slightly modify the code by using the loop split-

ting optimization technique. It allows us to eliminate the

read-after-write loop dependencies by breaking the original

loop into two loops which iterate over an additional temporal

data object. Listing 2 shows the result of using this technique

for the code shown in Listing 1.

coreCN

th
re

ad
CN

,1

th
re

ad
CN

,S
M

T

core1

th
re

ad
1,

1

th
re

ad
1,

SM
T

core2

th
re

ad
2,

1

th
re

ad
2,

SM
T

core3

th
re

ad
3,

1

th
re

ad
3,

SM
T

syncGroup1

syncGroup2

syncGroup3

syncGroupCN-1

Figure 8. Data flow synchronization strategy for MPDATA
stencil computations. MPDATA: Multidimensional Positive Defi-
nite Advection Transport Algorithm.

Szustak and Bratek 543

Another example of such restrictions are loops contain-

ing conditional statements with if construction. Few

MPDATA kernels include loops of this type as a result of

MPDATA boundary conditions. These loops include one or

two conditional statements of the following type:

� int km1 ¼ ((k¼=first)? k: k�1);

� int kp1 ¼ ((k¼=last)? k: kþ1);

To overcome this limitation, we add properly selected

paddings for the corresponding data arrays, and insert suit-

able data to them, just before executing a given kernel, as

illustrated in Listing 3.

The compiler cannot determine, without help, whether

there may be dependencies between loop iterations when

using pointers in C/Cþþ (Eltablawy and Vladimirov,

2015; Jeffers et al., 2016). As pointers are used in the

MPDATA code when accessing data arrays, the special

hints (e.g. #pragma ivdep) and keywords (e.g. restrict) are

used to avoid pointers aliasing issues. As a result, we help

the compiler assist successfully in vectorization of

MPDATA loops considering all the tested platforms.

Listing 1. Loop with read-after-write

Listitng 2. Result of applying the loop splitting optimi-

zation technique to eliminate the read-after-write

dependency

Listing 3. Idea of avoiding the if statement in the

boundary conditions inside the vectorized loop,

6. Parametric customization of
MPDATA code

In order to ensure the performance portability for the new

code of MPDATA, we propose a flexible tuning of the

parameterized transformation of the code. The main

assumption is to calibrate the proposed parametric

optimization techniques for a given computing platform,

before the execution of a specific numerical simulation.

For this aim, a four-step customization procedure is devel-

oped, and then implemented as an external mechanism—

not included in the MPDATA code—that produces the

customized configuration of the MPDATA parallel code.

In this way, input parameters that characterize a given

computing platform are transformed to generate an optimal

configuration for each parametric optimization technique.

The resulting configuration returns compile-time constants

for the MPDATA code, and thus not cause a run-time

degradation of performance. Furthermore, once generated

the configuration can be successfully used repeatedly.

6.1. Parameterization of computing platforms

The proposed tuning requires parameterization of charac-

teristics of different computing platforms. In consequence,

for a given platform, the following set of parameters is

determined:

1. total number TCNP of physical cores per platform;

2. number SP of SMT threads per each core;

3. SIMD width VSP (in bits);

4. number TN P of physical teams of cores;

5. number CN P of cores per every physical team;

6. total effective cache size TCSP; and

7. effective cache size CSP for each physical team.

Values of all these parameters have to be carefully

selected. The information about the first three parameters

is commonly available (see https://ark.intel.com), but

determining adequate values of others requires a deep

knowledge about a given architecture.

For ccNUMA-based platforms, the number TNP of

physical teams of cores is determined first of all by the

number of available processors. At the same time, CPUs

in the considered platforms contain two memory control-

lers per processor, which may affect the main memory

latency differently for different cores. For this reason, we

define other two physical groups of cores inside every pro-

cessor. As a result, the final value of TN P is twice the

number of available processors. Additionally, since a single

KNL processor includes four physical groups of cores

evenly placed on a mesh inside a chip, and connected to

four memory controllers of MCDRAM (Jeffers et al.,

2016), the value of TN P should be defined as 4. The con-

sidered platforms have an equal number of cores per every

physical team (Intel, 2018; Jeffers et al., 2016). As a result,

the number CNP of cores per every physical team is defined

as CN P ¼ TCN P=TMP.

For BDW and HSW CPUs, the total effective cache size

TCSP can be successfully fixed as the size of the last level

cache (LLC) (Intel, 2018), which in fact corresponds to the

size of L3 cache. For KNL processors, the size of LLC is

calculated as the aggregate size of all L2 caches located in

all KNL tiles (Jeffers et al., 2016). On the contrary, since

544 The International Journal of High Performance Computing Applications 33(3)

https://ark.intel.com

SKL-SP processors feature the non-inclusive L3 cache

(Intel, 2018), the value of TCSP in this case corresponds

rather to the aggregate size of L2 caches of all cores than to

the total size of L3 cache. The reason is that instead of

copying data both to the L2 and L3 caches as in the case

of previous generations of CPUs, now data are loaded

directly into the L2 cache of a given core. Based on the

size TCSP, we fix the effective size CSP of caches utilized

jointly by all cores of a given physical team. Since all

physical teams in the considered platforms include equal

numbers of cores, the last parameter is determined as

CSP ¼ TCSP=TNP. The results of parameterization of the

tested platforms are shown in Table 3.

6.2. Four-step procedure for MPDATA code
customization

Figure 9 presents the general scheme of the four-step proce-

dure developed for the parametric customization of the

MPDATA code. Its first step is responsible for calibrating

the islands-of-cores strategy. Initially, two parameters are

determined: (i) the total number NT of MPDATA work

teams (islands) of cores and (ii) numbers CNi of cores per

every i th work team, i ¼ 0; 1; ::: . . . NT � 1. For a given

platform, TN is equal to the number TNP of physical teams

of cores. Since all physical teams of any considered platform

include the same number of cores, we are entitled to fix CNi

as equal to the parameter CNP already determined for the

computing platform. Also, we have to indicate the physical

cores that are associated with the physical teams, in order to

correctly assigned them to the MPDATA work teams.

Afterward, the number and size of MPDATA subdo-

mains are determined following the islands-of-cores strat-

egy. For a given MPDATA simulation, the size of

MPDATA domain is specified as n� m� l. This domain

is decomposed into equal subdomains of size

nP� mP� lP using the 1D scheme of partitioning with

the total number of subdomains equal to the number NT

of MPDATA work teams. Therefore, each subdomain will

be of size nP ¼ n
nT

, mP ¼ m, lP ¼ l. Finally, we assign the

work teams of cores to the subsequent MPDATA subdo-

mains to enable parallel execution of subdomains by dif-

ferent work teams.

Every MPDATA subdomain has to be further parti-

tioned according to the (3þ1)D decomposition. The main

constraint is to keep all necessary data in the cache associ-

ated with a given work team. This is the goal of step 2,

which carefully selects the number, size, and optimal shape

of MPDATA blocks for each MPDATA subdomain, con-

sidering the restrictions of the (3þ1)D decomposition.

Also, this step customizes the size and shape of the ghost

regions for all MPDATA kernels that effectively differ

from each other.

The three parameters nB, mB, and lB define the size of

MPDATA blocks and further impose the optimal shape of

ghost regions. Following the previous section, the parameter

nB is set as small as possible (minimum nB ¼ 1), while the

other two parameters mB and lB are fixed as large as possible

to keep all necessary data in the cache available for a given

work team, where the cache size is limited by the parameter

CSP already determined for the platform. Considering con-

straints of the (3þ1)D decomposition, the optimal config-

uration that allows avoiding extra computations is fixed as

mB ¼ mP, lB ¼ lP if the cache capacity for a given work

team is large enough to keep all necessary data for a given

size nB. Otherwise, we iterate over mB ¼ mP
q

, with

q ¼ 2; 3; 4; :::; until the size of block is small enough to

keep all data in cache. The procedure for determining the

optimal size of block is summarized in Algorithm 1, which is

dedicated for the numerical simulation of weather predic-

tion, where typically lP ¼ l 2 ½64; 128�.

The combination of the first two steps specifies the

scheme of MPDATA decomposition (see also Figure 7).

While MPDATA subdomains are executed in parallel by

various work teams, every subdomain is decomposed into

blocks of size nB� mB� lB that are further executed one

by one. Finally, each block is processed by all physical cores

assigned to a corresponding work team. The main goal of

step 3 is to customize the data parallelism in each MPDATA

block, as well as grouping threads into work groups.

Firstly, we determine the partitioning of every

MPDATA block into a set of CN subblocks (see Figure

6(a)), each of size nB� mB
CN
� lB. In consequence, each sub-

block will be processed by one of CN work groups of

Table 3. Parameterization of computing platforms.

Platforms: A B C D E

P
ar

am
et

er
s:

TCNP 112 40 36 24 68

SP 2 2 2 1 4

VSP [bit] 512 512 256 256 512

TNP 8 4 4 4 4

CNP 14 10 9 7 17

TCSP [MB] 112 40 90 70 34

CSP [MB] 14 10 22.5 17.5 8.5

Algorithm 1. Determining the optimal size nB � mB � lB of
MPDATA block

Szustak and Bratek 545

threads, each with S threads, where S is equal to the number

SP of SMT threads per core. Additionally, the cores of a

given work team are distributed across work groups, and

successive work groups with S threads are assigned to sub-

sequent MPDATA subblocks.

Secondly, if S > 1, the optimal way for parallelization

of threads inside every subblock is selected. In particular,

we select one of the following scenarios for mapping

threads of a work group onto a given subblock:

1. In the first scenario, each MPDATA subblock is

partitioned into a set of parts of size S � 1� lB, and

then each part is processed in parallel using a work

group with S threads. This scenario is used in the

case of nB � S (see Figure 6(b)).

2. The second scenario is applicable if nB ¼ 1. In this

case, a single MPDATA subblock is decomposed

into parts of size 1� S � lB (Figure 6(c)).

3. The last scenario is based on a combination of the

previous scenarios. It is used for nB > 1 with

nB < S. Now every subblock is split into parts of

size Sa � Sb � lB, where Sa � Sb ¼ S (Figure 6(d)).

Afterward, we explicitly define the scope of work for all

threads of every work group, and select the correct policy

for OpenMP thread affinity. Also, step 3 allows customiz-

ing the way how the proposed data flow synchronization is

implemented.

The last step is responsible for ensuring the performance

portability for the vectorization of MPDATA computa-

tions. In this step, based on the knowledge about SIMD

hardware, including the SIMD width VSP, the size of data

padding is selected, as well as details of data alignment for

MPDATA arrays and hints for the compiler.

7. Performance evaluation

The proposed parameterized adaptation of the MPDATA

application to shared-memory systems is evaluated for five

servers with HSW, BDW, SKL-SP, and KNL processors

(see Table 1). In these benchmarks, the Intel icpc compiler

(v.18.0.1) is used with the optimization flag -O3 and prop-

erly chosen compiler arguments that support the full use of

SIMD hardware. The Intel Turbo Boost technology is

enabled in all servers. The KNL platform is configured in

the quadrant clustering mode with the MCDRAM memory

used in the flat mode (Jeffers et al., 2016).

In this work, we focus on using MPDATA for the

numerical weather prediction, where the double precision

floating point format is essential, and the size of grids is

typically limited (Lastovetsky et al., 2017; Szustak et al.,

2015) by n � 2048, m � 1024, l ¼ 64. The performance

results are obtained for 5000 time steps. In order to guar-

antee the reliability of benchmark results, the measure-

ments of execution time are repeated several times, and

the median value of measurements is used finally.

number of cores per work team
number of SMT threads per core

number, size and shape of MPDATA blocks

Step 3

scope of work for threads

number of threads per work group

number, size and shape of MPDATA subblocks
distributing work teams of cores across work groups

assignment of work groups to MPDATA subblocks

policy for OpenMP thread affinity

number of work groups of threads

configuration of synchronization

type of SIMD
size of data paddings
data alignment
hints for the compiler

Step 4

number, size and shape of MPDATA blocks
size and shape of ghost regions for MPDATA kernels

Step 2 effective cache size for physical team
number and size of MPDATA subdomains

number and size of MPDATA subdomains

number of cores per work team
assignment of OpenMP cores to work teams

number of work teams of cores

assignment of work teams to MPDATA subdomains

Step 1
number of physical teams of cores
number of cores per physical team

size of MPDATA domain

Input parameters Parameters of MPDATA code

Figure 9. Four-step procedure for MPDATA code customization. MPDATA: Multidimensional Positive Definite Advection Transport
Algorithm.

546 The International Journal of High Performance Computing Applications 33(3)

Table 4 and Figure 10 show the performance results of

MPDATA achieved for different problem sizes and various

computing platforms. Besides the execution time, the over-

all speedup of the optimized code against the original ver-

sion of MPDATA is shown. Also, the sustained

performance (in Gflop/s) is included for the new code, as

well as the utilization rate in comparison with the theore-

tical peak performance of the servers. Finally, we present

details of MPDATA configurations returned by the pro-

posed four-step customization procedure.

The main conclusion is that the proposed methodology

allows us to improve radically the efficiency of MPDATA

computations in comparison with the basic version of code.

As shown in Figure 10(a), the proposed parameterized

adaptation accelerates the MPDATA application about

10�, 8�, 7�, 6�, and 9� for 4 � SKL-SP, 2 � SKL-

SP, 2 � BDW, 2 � HSW, and 1 � KNL platforms, respec-

tively. What is important, for all platforms and different

problem sizes, we try to find empirically better configura-

tions of the MPDATA code than returned by the four-step

procedure, but without success.

For a given platform, the sustained performance of the

new MPDATA code is kept at a similar level, indepen-

dently of the problem size (see Figure 10(b)). As expected,

the most powerful computing platform is the four-socket

server with SKL-SP CPUs. This platform allows us to exe-

cute computations with the sustained performance of

around 1.0–1.1 Tflop/s (33% of peak) for all tests. On the

other hand, the two-socket servers with SKL-SP, BDW,

and HSW processors feature the highest utilization rate of

the theoretical peak performance (about 41–46%).

Remark: For the KNL platform, there is a seeming

discrepancy between Table 4 where the new code achieves

the speedup of about nine times against the basic code, and

Figure 10(a) where we have speedups of around five times.

The reason for this effect is a sharp fall in the performance

of the basic code for large domains. At the same time, the

new version allows keeping the sustained performance at a

stable level of around 260 Gflop/s, that gives about 20% of

the peak.

Figure 11 presents the comparison of impact of various

optimization techniques on the achieved performance gain

for different platforms. It can be concluded that in all cases

Table 4. Performance results of MPDATA obtained for various computing platforms, with the domain of size 2048 � 1024 � 64.

Platform

Execution time [s]

Speedup Perfor. [Glops/s] % of peak Team config. Size of block #SMT groupsBasic code Optimized code

A 4 � SKL-SP 1472.5 151.3 9.73 1048.1 34.4 8 � 1 2 � 341 � 64 2 � 1
B 2 � SKL-SP 2948.9 352.6 8.36 447.9 43.7 4 � 1 1 � 341 � 64 1 � 2
C 2 � BDW 4382.9 598.6 7.32 263.3 45.7 4 � 1 1 � 512 � 64 1 � 2
D 2 � HSW 4714.1 777.7 6.06 203.1 41.3 4 � 1 2 � 341 � 64 1 � 1
E 1 � KNL 5357.3 609.5 8.78 261.9 20.1 4 � 1 4 � 128 � 64 4 � 1

SKL-SP: Skylake-SP; BDW: Broadwell; HSW: Haswell; KNL: Knights Landing; SMT: simultaneous multithreading; MPDATA: Multidimensional Positive
Definite Advection Transport Algorithm.

(a)

Size of Domain

O
ve

ra
ll

Sp
ee

du
p

0

12

46x215x215 46x215x420146x652x652

4

8

A B C D E A B C D EA B C D E

(b)

Size of Domain

Su
st

ai
ne

d
pe

rf
or

m
an

ce
[G

flo
p/

s]

0

1200

46x215x215 46x215x420146x652x652

60
0

A B C D E A B C D EA B C D E

(A) 4xSKL-SP; (B) 2xSKL-SP; (C) 2xBDW; (D) 2xHSW; (E) KNL

Figure 10. Performance results of MPDATA achieved for dif-
ferent problem sizes and various platforms: (a) overall speedup of
the optimized version of MPDATA against the basic version and
(b) sustained performance. SKL-SP: Skylake-SP; BDW: Broadwell;
HSW: Haswell; KNL: Knights Landing; MPDATA: Multidimen-
sional Positive Definite Advection Transport Algorithm.

Ti
m

e
[s

]
0

(0) basic version; (1) (3+1)D decomposition;
(2a) 2x1 Teams; (2b) 4x1 Teams; (2c) 8x1 Teams;

 (3) 2x1 SMT; (4) DataFlow Sync.

760

0 1 2b 3 4

2.
6x

1.
3x

1.
23

x
1.

15
x

E: 1xKNL
4.77x

0 1 2a2b 3 4

3.
54

x
1.

84
x

1.
02

x
1.

04
x

1.
23

x

B: 2xSKL-SP
8.52x

0 1 2b2c 3 4

1.
71

x
3.

87
x

1.
15

x
1.

05
x

1.
30

x

A: 4xSKL-SP
10.38x

Parameters optimization steps

Figure 11. Comparison of the impact of optimization techniques
on the performance gain achieved for various platforms, with
MPDATA domain of size 1024� 512� 64. MPDATA: Multidi-
mensional Positive Definite Advection Transport Algorithm; SMT:
simultaneous multithreading.

Szustak and Bratek 547

the MPDATA performance is significantly increased by

using the (3þ1)D decomposition. It allows us to alleviate

the memory and communication constraints by increasing

both cache reusing and the data locality. As a result, the

speedup in the range from about 1.7� to about 3.5� is

achieved against the basic code.

The next technique, islands-of-core strategy, fits per-

fectly into ccNUMA architectures. As shown in Figure

11, a significant performance gain is noticed for the four-

socket server, that using the configurations with 4 � 1

teams performs computation 3.87� faster against the pure

(3þ1)D decomposition. At the same time, the two-socket

server allows accelerating MPDATA 1.84� (configuration

with 2 � 1 teams). Utilizing the islands-of-core strategy

inside each processor gives also some performance gain,

however, much smaller. In this case, the acceleration

reaches 1.15� for the four-socket server (configurations

with 8 � 1 teams), and only 1.02� for the two-socket plat-

form (configuration with 4� 1 teams). On the contrary, the

platform with a single KNL processor achieves the perfor-

mance gain of about 1.3� using four teams per processor.

Then we evaluate grouping threads for executing on a

single core. As expected, the highest performance gain is

obtained for KNL that supports four threads per core. This

processor gives a constant performance gain of about 20%
for all tested MPDATA sizes. For the rest of platforms

that support two SMT threads per core, the performance

profit is modest (up to 5%). Finally, we investigate the

advantages of using the data flow synchronization that—

in contrast to the barrier approach—synchronize only

interdependent threads. As shown in Figure 11, the per-

formance improvements of up to 30% is achieved against

the MPDATA code that involves the three techniques

already evaluated.

Table 5 presents the execution times for the scalar and

vectorized versions of the new MPDATA code achieved

with and without the use of the Intel Turbo Boost technol-

ogy. The speedup of vectorization is included as well, to

show the advantages of using the automatic vectorization

for various platforms.

The automatic vectorization allows achieving about two

to four times better performance against the scalar version

for all benchmarks. At the same time, the new code with the

disabled automatic vectorization achieves quite a good

performance. The key to success in this case is quite large

clock frequency of processors (especially with Turbo

Boost), which is significantly reduced for workloads heavy

in AVX-512 or AVX2 instructions (see Table 1). For exam-

ple, the base clock frequency of the Intel Xeon Platinum

8180 CPU is 2.5 GHz, but when all active cores are heavily

utilized with AVX-512, the processor clocks down to 1.7

GHz (Intel Xeon Processor, 2018). The Intel Turbo Boost

technology plays a key role here since it enables increasing

the CPU frequency definitely, for non-AVX workloads.

This affects the execution time for both the scalar and

vectorized version of new MPDATA code.

Nevertheless, the new code still does not utilize the

maximum of the theoretical capacity of vectorization. For

example, using two SKL-SP CPUs with the disabled Turbo

Boost, we achieve the speedup of vectorization of about

3.2�, while theoretically the speedup of vectorization is

limited to around 5.3� (see Table 1). The Intel Advisor

tool shows us that the first four MPDATA kernels are not

able to fully utilize SIMD units, in contrast to other kernels.

The tool reveals that kernels 1–4 are able to utilize vector

units at 60–70% only, while the other kernels reach the

maximum (100%). As expected, the main reason is that

cores remain idle as they wait for input data to arrive from

the main memory. This effect increases the overall execu-

tion time and reduces the SIMD efficiency. Another factor

inhibiting the MPDATA performance is the synchroniza-

tion overhead that can even refer up to 15% of the total

execution time (see Szustak, 2018).

The memory-intensive parallel codes can suffer from

the memory bandwidth saturation as more threads are used.

As an increasing number of threads or processes share the

limited resources of bandwidth, the scalability of the new

MPDATA code typically decreases for all the tested plat-

forms. Figure 12 shows the parallel efficiency achieved for

different number of cores on a single Intel Xeon Platinum

CPU. In this case, the highest performance corresponding

to about 80% of linear scaling is achieved when utilizing all

28 cores. At the same time, other platforms that use CPUs

with less cores provide better parallel efficiency, which is

typically greater than 90% of linear scaling when running

MPDATA on all available cores of a given processor.

Finally, Table 6 shows the parallel efficiency expressed

as percentage of linear scaling achieved on the four-socket

Table 5. Execution times for scalar and vectorized versions of new MPDATA code, as well as speedup of vectorization achieved both
with and without the use of Turbo Boost (domain of size 1024 � 512 � 64).

Platform
A: 4 � SKL-SP B: 2 � SKL-SP C: 2 � BDW D: 2 � HSW E: 1 � KNL

Intel Turbo mode ON OFF ON OFF ON OFF ON OFF ON OFF

Time [s]
Scalar 102.0 116.0 244.5 285.0 315.2 372.5 437.9 — 586.9 634.6
SIMD 37.1 38.4 89.0 90.0 149.9 153.1 192.9 — 147.9 157.4

Speedup 2.75 3.02 2.75 3.20 2.10 2.43 2.27 — 3.97 4.03

SKL-SP: Skylake-SP; BDW: Broadwell; HSW: Haswell; KNL: Knights Landing; MPDATA: Multidimensional Positive Definite Advection Transport
Algorithm.

548 The International Journal of High Performance Computing Applications 33(3)

server for different number of processors. In this bench-

mark, the maximum sustained performance of about 1.07

Tflop/s is obtained with four processors, which corresponds

to about 92% of linear scaling. Also, a point worth noting is

97.5–99% of linear scaling achieved on the two-socket

platforms.

8. Related work

The code portability is an important issue for scientific and

commercial environments (Hager and Wellein, 2011; Unat

et al., 2014). This challenge was imperceptible for applica-

tion developers in the prior decades, especially when devel-

opment of microprocessors was focused on increasing the

clock rate (Bobulski, 2016; Czarnul, 2018a). However,

over the last decade we have observed major changes in

computing systems which are becoming increasingly com-

plex, massively parallel, hierarchical, and also heteroge-

neous (Czarnul, 2017; Szustak et al., 2016a).

The cost of data movement has turned into the dominant

factor in HPC systems (Malik et al., 2016; Rico-Gallego

et al., 2017). To reduce this cost, applications have to be

redesigned and tuned for data movements both in the mem-

ory hierarchy and between processing units (Hager and

Wellein, 2011; Wyrzykowski et al., 2012a).

Emerging computing architectures are characterized by

a large number of parameters whose diversity makes it

difficult to ensure performance portability. The scientific

problems aimed to be solved in this work are strongly

related with the quick development of current and future

computer architectures. While many details of the future

architectures are still undefined, an abstract machine

model (AMM) outlined in the works of Ang et al.

(2014) and Kogge and Shalf (2013) enables researchers

to focus on the aspects of a machine that are important or

relevant to performance and portable code structure.

Figure 13 depicts an AMM that captures the anticipated

evolution of existing node architectures based on industry

road maps (Ang et al., 2015).

All computing platforms considered in this work fit per-

fectly into respective features of this AMM architecture. It

can be concluded also that the proposed combination of

parametric optimization techniques in conjunction with the

adaptive customization can be successfully accommodated

for shared-memory designs based on AMM.

The efficient porting of applications to novel HPC

systems has become a significant challenge (Czarnul,

2018b; Szustak et al., 2016b; Unat et al., 2014). Origi-

nally, application codes are often developed without con-

sidering advanced architectures and related tool chains.

The portable parallel programming is a broad field that

comprises a number of different approaches, encompass-

ing data partitioning and distribution, management of

data locality and optimization of data movement, work-

load scheduling, performance/energy modeling, autotun-

ing, and so on.

The stencil-based algorithms have traditionally been

optimized by many authors over the years (Henretty

et al., 2011; Szustak et al., 2015). One of the main direc-

tions of improving the efficiency of stencil computations is

focused around different strategies of domain decomposi-

tion (Lastovetsky et al., 2017; Zhou et al., 2012), like space

and temporal blocking (Bandishti et al., 2013; Datta et al.,

2009), diamond and multi-dimensional tiling (Bertolacci

et al., 2015; Malas et al., 2016; Strzodka et al., 2011).

Similarly to our study, these strategies provide as nearly

as possible balanced workload of computing resources,

where the main aim of these works is to attempt to better

exploit the data locality. However, in contrast to this work,

they investigate the homogeneous stencils computations

with a single pattern, and typically the code transformations

take place between successive time steps. In our work, we

develop a combination of parametric optimization tech-

niques within every MPDATA time step that are dedicated

for a heterogeneous set of stencils with different patterns.

Furthermore, considering the previously mentioned

works, a rather complex interaction between the proposed

code transformations and the underlying architecture

Effi
ci

en
cy

 [%
]

Number of cores

100

1 287 14 21

80

1x SKL-SP

60

Figure 12. Parallel efficiency for different number of cores (% of
linear scaling) achieved with a single Intel Xeon Platinum 8180
CPU and domain size of 1024� 512� 64.

Table 6. Parallel efficiency for different number of processors
expressed as percentage of linear scaling, achieved with four-
socket platform and domain of size 1024� 512� 64.

Number of CPUs 1 2 3 4

% of linear scaling 100 97.91 94.06 91.84

(H
igh Capacity,

 Low
 Bandw

ith)

D
RAM

N
VRAM

3D Stacked
Memory

(Low Capacity, High Bandwith)

Thin Cores / Accelerators
Fat core

3D Stacked
Memory

Fat core

Figure 13. AMM for emerging hardware. Source: Ang et al.
(2014). AMM: abstract machine model.

Szustak and Bratek 549

makes it difficult to find an optimal set of transformations

(and variant of code) for any given stencil computations

(Bandishti et al., 2013; Bertolacci et al., 2015; Strzodka

et al., 2011). Given the complexity of emerging comput-

ing systems where small parameter changes may lead to

large variations in performance, hand-tuning algorithms

have become impractical (Davidson and Owens, 2012).

An efficient way to solve this problem and develop self-

adaptable applications is the software automatic tuning

(autotuning in short), which is a paradigm enabling the

software adaptation to a variety of computational condi-

tions (Naono et al., 2011). Autotuning has been success-

fully applied in a number of widely used HPC algorithms

and applications (Falch and Elster, 2015). However, the

autotuning method is just a general concept of optimiza-

tion of computations. Each algorithm requires often a spe-

cific analysis and deployment of this concept for a

particular class of computer architectures.

The stencil computations often rely on autotuning tech-

niques, based on the iterative compilation or machine

learning, to achieve portable high performance (Cosenza

et al., 2017). Iterative compilation autotuning is a challen-

ging and time-consuming problem that may be unafford-

able in many scenarios. In this case, the autotuning problem

is modeled as a classification problem, where each class

corresponds to a code variant. These variants expose a large

and complex space of equivalent implementations. There

are many algorithms such as artificial neural networks or

support vector machines (Leather et al., 2009) that are used

to select the optimal variant. However, the large number of

code variants to execute for a stencil may be too large to be

consistently covered in a training phase.

Alternatively, the work of Cosenza et al. (2017) presents

an interesting solution to overcome the aforementioned

problems with the iterative search and machine learning

approaches. The authors present an approach for modeling

the performance of stencil computations using the struc-

tural learning. They look at the inner structure of the train-

ing data to reorganize the stencil code executions by type,

input size, and tuning parameters. In this work, an ordinal

regression formulation is used in order to compare and rank

different stencil variants without executing them.

In contrast to the previously mentioned works, in our

study the adaptive code of MPDATA follows along with a

variety of the hardware architectural issues such as mem-

ory hierarchy, threading, vectorization, and their interac-

tion. In general, the hardware features of a given platform

implies the optimal configuration for the MPDATA code

transformation. Such a formulation of the MPDATA code

is enabled by the parametric customization proposed in

this work.

9. Conclusions and future works

Achieving performance portability for real-life scientific

applications requires deep knowledge of their interaction

with various computing systems. The sustained

performance of a given application is affected by such

features of computing architectures as number and charac-

teristics of processors, cores, and threads; type of SIMD

hardware; parameters of memory hierarchy; relationship

between scalar and SIMD frequencies; and many others.

Understanding and utilizing full capabilities of modern

architectures is quite impossible for programmers without a

background in computer architecture. Threading and vec-

torization are essential functionality of powerful proces-

sors. In general, both threading and vectorization are

necessary to effectively use all computing resources in

applications. Together, they offer definitely more perfor-

mance than each of techniques alone. Nevertheless, the

memory and communication constraints can strongly limit

the attainable performance on modern HPC systems.

Apart from using such common optimization techniques

as loop tiling/blocking, loop fusion, and others, the appli-

cation developers need a set of programming abstractions

to describe the data locality in new computing ecosystems.

Accelerating memory access by arranging data in an appro-

priate way is vital for achieving the high application per-

formance. Applications with a poor data locality reduce the

efficiency of memory hierarchy, causing long waiting

times for access to data. A purposeful utilization of various

optimization techniques and increasing the data locality

play a key role in enabling applications to run on different

architectures, while ensuring the performance portability.

In this work, we focus on developing the set of para-

metric optimization techniques and four-step procedure for

customization of the MPDATA code that ensure the per-

formance portability for the MPDATA stencil-based appli-

cation across a variety of Intel architectures released in the

last few years. Among these techniques are islands-of-cores

strategy, (3þ1)D decomposition, exploiting data paralle-

lism and SMT, data flow synchronization, and vectoriza-

tion. The proposed adaptation methodology helps us to

develop the automatic transformation of the MPDATA

code to achieve high sustained scalable performance for all

DP Vector Add Peak
514 [Gflop/s]

DDR4

51
4

Pe
rf

or
m

an
ce

 [
G

flo
p/

s]

L1
L2 L3

Arithmetic Intensity [flop/byte]
0.16

0.04
0.39

3.65

Kernel 4 of new version

Kernel 4 of basic version

Figure 14. Comparison of Intel Advisor Roofline plots for the
fourth kernel of basic and new versions of MPDATA application
executed on platform with two Intel Xeon E5-2697v4 CPUs.
MPDATA: Multidimensional Positive Definite Advection Trans-
port Algorithm.

550 The International Journal of High Performance Computing Applications 33(3)

tested servers. This means that for a given platform, the

sustained performance of the new code is kept at a similar

level, independently of the problem size. The highest per-

formance utilization rate of about 41–46% of the theoreti-

cal peak, measured for all benchmarks, is provided for any

of the two-socket servers that are based on SKL-SP, BDW,

and HSW CPU architectures. At the same time, the four-

socket server with SKL-SP processors achieves the highest

sustained performance of around 1.0–1.1 Tflop/s that cor-

responds to about 33% of the peak.

Although the proposed methodology definitely improve

the efficiency of MPDATA accelerating its execution up to

10 times, we are still not able to get a full potential of

computing systems used in benchmarks. Figure 14 shows

a comparison of Intel Advisor Roofline plots for one of the

kernels of the basic and new versions of MPDATA. These

plots tell us that cores remain idle as they wait for data to

arrive in the case of both the basic and new codes. How-

ever, the basic version is mainly limited by the DRAM peak

bandwidth, while the new MPDATA code allows us to

overcome this limitation, but is still finally constrained

by the peak bandwidth of L2 cache.

Summarizing, the developed combination of optimiza-

tion techniques can also help in understanding the evolu-

tion of computing architectures, as well as in generalizing

our approach for resolving performance portability issues.

Our future work will also be focused on developing the

MPDATA Benchmark Framework that enables comparing

the performance metrics of MPDATA on a wide range of

current and future architectures delivered from chip-

making vendors such as Intel, IBM, AMD, and ARM.

Authors’ Note

This work was partially performed during a STSM scien-

tific visit of Lukasz Szustak at IT4Innovations, Technical

University of Ostrava, Czech Republic, supported by EU

under the COST Program Action IC1305: Network for

Sustainable Ultrascale Computing (NESUS).

Acknowledgements

The authors are grateful to Intel Technology Poland,

Gdansk, Poland, as well as Poznan Supercomputing and

Networking Center, Poland for granting access to HPC

platforms. The authors would also like to thank Georg

Zitzlsberger from IT4Innovations, Technical University

of Ostrava, Czech Republic for his helpful advice on var-

ious technical issues.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This research was conducted with the financial

support of the National Science Centre (Poland) under

grant no. UMO-2017/26/D/ST6/00687.

References

Ang JA, Barrett RF, Benner RE, et al. (2014) Abstract machine

models and proxy architectures for exascale computing. In:

Hardware-software co-design for high performance comput-

ing (Co-HPC), New Orleans, Louisiana, USA, 17 November

2014, pp. 25–32. IEEE.

Bandishti V, Pananilath I and Bondhugula U (2013) Tiling stencil

computations to maximize parallelism. In: SC’12 proceedings

of the international conference on high performance comput-

ing, networking, storage and analysis, Salt Lake City, USA,

10–16 November 2012, pp. 1–11. IEEE.

Bertolacci I, Olschanowsky CRM, Harshbarger B, et al. (2015)

Parameterized diamond tiling for stencil computations with

chapel parallel iterators. In: Proceedings of the 29th ACM

international conference on supercomputing (eds KShin-ya P

Andrzej, Jerzy P, Imed E and Janusz K), California, USA, 8–

11 June 2015, pp. 197–206. NY, USA: ACM.

Bobulski J (2016) Parallel facial recognition system based on

2DHMM. In: International multi-conference on advanced

computer systems (ACS 2016), Miedzyzdroje, Poland, 19–21

October 2016, pp. 258–265. Cham: Springer.

Cosenza B, Durillo J, Ermon S, et al. (2017) Autotuning stencil

computations with structural ordinal regression learning. In:

2017 IEEE international parallel and distributed processing

symposium (IPDPS), Sankt Goar, Germany, 12–13 June 2017,

pp. 72–75. NY, USA: ACM.

Czarnul P (2017) Benchmarking performance of a hybrid Xeon/

Xeon Phi system for parallel computation of similarity mea-

sures between large vectors. International Journal of Parallel

Programming 45(5): 1091–1107.

Czarnul P (2018a) Parallel Programming for Modern High Per-

formance Computing Systems. Boca Raton: Chapman and

Hall/CRC.

Czarnul P (2018b) Parallelization of large vector similarity com-

putations in a hybrid CPUþGPU environment. The Journal of

Supercomputing 74(2): 768–786.

Datta K, Kamil S, Williams S, et al. (2009) Optimization and

performance modeling of stencil computations on modern

microprocessors. SIAM Review 51(1): 129–159.

Davidson A and Owens J (2012) Toward techniques for auto-

tuning GPU algorithms. In: Proceedings of the 10th interna-

tional conference on applied parallel and scientific computing,

PARA 2010 (ed Jónasson K), Reykjavı́k, Iceland, 6–9 June

2010, pp. 110–119. Berlin Heidelberg: Springer.

Eltablawy A and Vladimirov A (2015) Capabilities of Intel AVX-

512 in Intel Xeon Scalable Processors (Skylake), Sunnyvale,

USA. Colfax International.

Falch T and Elster AC (2015) Machine learning based auto-tuning

for enhanced opencl performance portability. In: International

parallel and distributed processing symposium workshop

(IPDPSW), Hyderabad, India, 25–29 May 2015, pp.

1231–1240. IEEE.

Szustak and Bratek 551

Hager G and Wellein G (2011) Introduction to High Performance

Computing for Science and Engineers. Boca Raton: CRC

Press.

Henretty T, Stock K, Pouchet LN, et al. (2011) Data layout trans-

formation for stencil computations on short-vector SIMD

architectures. In: International conference on compiler con-

struction (CC’11/ETAPS’11), Saarbrücken, Germany, 26

March–3 April 2011, pp. 225–245. Berlin Heidelberg:

Springer-Verlag.

Intel (2018) Intel 64 and IA-32 architectures optimization refer-

ence manual. Available at: https://software.intel.com/sites/

default/files/managed/9e/bc/64-ia-32-architectures-optimiza

tion-manual.pdf (accessed 1 July 2018).

Intel Xeon Processor (2017) Intel Xeon Processor E7-8800/4800

v4 Product Family Specification. Available at: https://www.

intel.com/content/dam/www/public/us/en/documents/specifi

cation-updates/xeon-e7-v4-spec-update.pdf (accessed 1 July

2018).

Intel Xeon Processor (2018) Intel Xeon Processor Scalable Fam-

ily Specification. Available at: https://www.intel.com/content/

dam/www/public/us/en/documents/specification-updates/

xeon-scalable-spec-update.pdf (accessed 1 July 2018).

Jeffers J, Reinders J and Sodani A (2016) Intel Xeon Phi Proces-

sor High Performance Programming: Knights Landing Edi-

tion. Burlington: Morgan Kaufmann.

Kogge P and Shalf J (2013) Exascale computing trends: adjusting

to the “new normal” for computer architecture. Computing in

Science & Engineering 15(6): 16–26.

Kumar S, Bhattacharyya R, Joshi B, et al. (2016) On the role of

repetitive magnetic reconnections in evolution of magnetic

flux ropes in solar corona. The Astrophysical Journal

830(2): 1–12.

Laccetti G, Lapegna M and Mele V (2016) Loosely coordinated

model for heap-based priority queues in multicore environ-

ments. International Journal of Parallel Programming

44(4): 901–921.

Lastovetsky A, Szustak L and Wyrzykowski R (2017) Model-

based optimization of EULAG kernel on Intel Xeon Phi

through load imbalancing. IEEE Transactions on Parallel and

Distributed Systems 28(3): 787–797.

Leather H, Bonilla E and O’Boyle M (2009) Automatic feature

generation for machine learning based optimizing compila-

tion. In: CGO’09 Proceedings of the 7th annual IEEE/ACM

international symposium on code generation and optimization,

Seattle, USA, 22–25 March 2009, pp. 81–91. IEEE.

Malas T, Hornich J, Hager G, et al. (2016) Optimization of an

electromagnetics code with multicore wavefront diamond

blocking and multi-dimensional intra-tile parallelization. In:

2016 IEEE international parallel and distributed processing

symposium, Chicago, USA, 23–27 May 2016, pp. 142–151.

IEEE.

Malik T, Rychkov V and Lastovetsky A (2016) Network-aware

optimization of communications for parallel matrix multipli-

cation on hierarchical HPC platforms. Concurrency and Com-

putation: Practice and Experience 28(3): 802–821.

Malik T, Szustak L, Wyrzykowski R, et al. (2016) Network-aware

optimization of MPDATA on homogeneous multi-core

clusters with heterogeneous network. In: ICA3PP 2016 collo-

cated workshops: SCDT, TAPEMS, BigTrust, UCER, DLMCS,

pp. 30–42. Springer.

Naono K, Teranishi K, Cavazos J, et al. (eds) (2011) Software

Automatic Tuning: From Concepts to State-of-the-Art Results,

Granada, Spain, 14–16 December 2016, pp. 30–42. Berlin:

Springer.

OpenMP (2015) OpenMP application programming interface ver-

sion 4.5. Available at: https://www.openmp.org/wp-content/

uploads/openmp-4.5.pdf (accessed 1 July 2018).

Rico-Gallego JA, Lastovetsky A and Diaz-Martin JC (2017)

Model-based estimation of the communication cost of hybrid

data-parallel applications on heterogeneous clusters. IEEE

Transactions on Parallel and Distributed Systems 28(11):

3215–3228.

Rojek K and Szustak L (2012) Parallelization of EULAG model

on multicore architectures with GPU accelerators. In: Pro-

ceedings of 9th international conference on parallel process-

ing and applied mathematics, PPAM 2011, Torun, Poland, 11–

14 September 2011, pp. 391–400. Springer.

Rosa B, Szustak L, Wyszogrodzki AA, et al. (2015) Adaptation of

multidimensional positive definite advection transport algo-

rithm to modern high-performance computing platforms.

International Journal of Modeling and Optimization 5(3):

171–176.

Smolarkiewicz PK (2006) Multidimensional positive definite

advection transport algorithm: an overview. International

Journal for Numerical Methods in Fluids 50(10): 1123–1144.

Smolarkiewicz PK and Charbonneau P (2013) EULAG, a com-

putational model for multiscale flows: an MHD extension.

Journal of Computational Physics 236: 608–623.

Smolarkiewicz PK and Margolin L (1998) MPDATA: a finite-

difference solver for geophysical flows. Journal of Computa-

tional Physics 140(2): 459–480.

Smolarkiewicz PK, Szmelter J and Xiao F (2016) Simulation of

all-scale atmospheric dynamics on unstructured meshes. Jour-

nal of Computational Physics 322(C): 267–287.

Strugarek A, Beaudoin P, Brun AS, et al. (2016) Modeling turbu-

lent stellar convection zones: sub-grid scales effects. Advances

in Space Research 58(8): 1538–1553.

Strzodka R, Shaheen M, Pajak D, et al. (2011) Cache accurate

time skewing in iterative stencil computations. In: 2011 inter-

national conference on parallel processing (ICPP), Taipei

City, Taiwan, 13–16 September 2011, pp. 571–581. IEEE.

Szustak L (2018) Strategy for data-flow synchronizations in sten-

cil parallel computations on multi-/manycore systems. The

Journal of Supercomputing 74(4): 1534–1546.

Szustak L, Halbiniak K, Kuczynski L, et al. (2016) Porting and

optimization of solidification application for CPU–MIC

hybrid platforms. International Journal of High Performance

Computing Applications 32(4): 523–539. DOI: 10.1177/

1094342016677740.

Szustak L, Halbiniak K, Kulawik A, et al. (2016a) Using hStreams

Programming Library for accelerating a real-life application

on Intel MIC. In: ICA3PP 2016 collocated workshops: SCDT,

TAPEMS, BigTrust, UCER, DLMCS, Granada, Spain, 14–16

December 2016, pp. 373–382. Cham: Springer.

552 The International Journal of High Performance Computing Applications 33(3)

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e7-v4-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e7-v4-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e7-v4-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Szustak L, Halbiniak K, Kulawik A, et al. (2016b) Toward par-

allel modeling of solidification based on the generalized finite

difference method using Intel Xeon Phi. In: Proceedings of

11th international conference on parallel processing and

applied mathematics, PPAM 2015, Krakow, Poland, 6–9 Sep-

tember 2011, pp. 411–412. Cham: Springer.

Szustak L, Rojek K and Gepner P (2014b) Using Intel Xeon Phi

coprocessor to accelerate computations in MPDATA algo-

rithm. In: Proceedings of 10th international conference on

parallel processing and applied mathematics, PPAM 2013

(eds Roman W, Jack D, Konrad K and Jerzy W), Torun,

Poland, 8–11 September 2013, pp. 582–592. Berlin: Springer.

Szustak L, Rojek K, Olas T, et al. (2015) Adaptation of MPDATA

heterogeneous stencil computation to Intel Xeon Phi coproces-

sor. Scientific Programming 2015: 1–14.

Szustak L, Rojek K, Wyrzykowski R, et al. (2014a) Toward effi-

cient distribution of MPDATA stencil computation on Intel

MIC architecture. In: Proceedings of 1st international work-

shop on high-performance stencil computations, HiStencils

2014, in conjunction with HiPEAC 20–22 January 2014,

Vienna, Austria, 21 January 2014, pp. 51–56.

Szustak L, Wyrzykowski R and Jakl O (2017) Islands-of-cores

approach for harnessing SMP/NUMA architectures in hetero-

geneous stencil computations. In: Proceedings of 14th inter-

national conference on parallel computing technology, PaCT

2017 (ed Victor M), Nizhni Novgorod, Russia, 4–8 September

2017, pp. 351–364. Cham: Springer.

Unat D and others (eds) (2014) Programming abstractions for data

locality, Report no. 01083080, v1, November 2014. Available

at: https://hal.inria.fr/hal-01083080/file/PADAL-report.pdf

(accessed 1 June 2018).

Vladimirov A, Asai R and Karpusenko V (2015) Parallel Pro-

gramming and Optimization with Intel Xeon Phi Coproces-

sors, 2nd ed. Sunnyvale, USA: Colfax International.

Wyrzykowski R, Rojek K and Szustak L (2012a) Model-driven

adaptation of double-precision matrix multiplication to the cell

processor architecture. Parallel Computing 38: 260–276.

Wyrzykowski R, Rojek K and Szustak L (2012b) Using blue

Gene/P and GPUs to accelerate computations in the EULAG

model. In: Proceedings of 8th international conference on

large-scale scientific computations, LSSC 2011 (eds Ivan L,

Svetozar M and Jerzy W), Sozopol, Bulgaria, 6–10 June 2011,

pp. 670–677. Berlin: Springer.

Wyrzykowski R, Szustak L and Rojek K (2014) Parallelization

of 2D MPDATA EULAG algorithm on hybrid architectures

with GPU accelerators. Parallel Computing 40(8):

425–447.

Zhou X, Giacalone JP, Garzarán MJ, et al. (2012) Hierarchical

overlapped tiling. In: CGO’12 Proceedings of 10th interna-

tional symposium on code generation and optimization, San

Jose, California, 31 March – 04 April 2012, pp. 207–218. NY,

USA: ACM.

Author biographies

Lukasz Szustak received his MSc in Computer Science

from the Czestochowa University of Technology in 2008

and his PhD in 2012. During this period, his doctoral

research focused on adaptation of high performance com-

puting to modern parallel architectures including hybrid

platforms. Since 2012, Dr. Szustak is employed at Czesto-

chowa University of Technology. His current work is asso-

ciated with the development of efficient methods of

scheduling, load balancing, and adaptations of stencil based

computations to modern HPC architectures.

Pawel Bratek is a student of both computer and mathemat-

ical science at the Faculty of Mechanical Engineering and

Computer Science, Czestochowa University of Technol-

ogy, Poland. His scientific activity focus on code optimiza-

tion of numerical application for multi- and manycore

parallel architectures.

Szustak and Bratek 553

https://hal.inria.fr/hal-01083080/file/PADAL-report.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

