
Received: 8 February 2020 Revised: 20 April 2020 Accepted: 17 May 2020

DOI: 10.1002/cpe.5905

S P E C I A L I S S U E P A P E R

Dynamic workload prediction and distribution in numerical
modeling of solidification on multi-/manycore architectures

Kamil Halbiniak1 Tomasz Olas1 Lukasz Szustak1 Adam Kulawik1 Marco Lapegna2

1Department of Computer Science,

Czestochowa University of Technology,

Czestochowa, Poland

2Department of Mathematics and Applications,

University of Naples Federico II, Naples, Italy

Correspondence

Kamil Halbiniak, Department of Computer

Science, Czestochowa University of

Technology, Dabrowskiego 69, 42-201

Czestochowa, Poland.

Email: khalbiniak@icis.pcz.pl

Funding information

Ministry of Science and High Education

(Poland), Grant/Award Number:

020/RID/2018/19 (position 12); National

Science Centre (Poland), Grant/Award

Number: UMO-2017/26/D/ST6/00687

Summary

This work is a part of the global tendency to use modern computing systems for

modeling the phase-field phenomena. The main goal of this article is to improve the

performance of a parallel application for the solidification modeling, assuming the

dynamic intensity of computations in successive time steps when calculations are per-

formed using a carefully selected group of nodes in the grid. A two-step method is

proposed to optimize the application for multi-/manycore architectures. In the first

step, the loop fusion is used to execute all kernels in a single nested loop and reduce

the number of conditional operators. These modifications are vital to implementing

the second step, which includes an algorithm for the dynamic workload prediction and

load balancing across cores of a computing platform. Two versions of the algorithm are

proposed—with the 1D and 2D maps used for predicting the computational domain

within the grid. The proposed optimizations allow increasing the application perfor-

mance significantly for all tested configurations of computing resources. The highest

performance gain is achieved for two Intel Xeon Platinum 8180 CPUs, where the new

code based on the 2D map yields the speedup of up to 2.74 times, while the usage of

the proposed method with the 2D map for a single KNL accelerator permits reducing

the execution time up to 1.91 times.

K E Y W O R D S

Intel Xeon scalable and KNL processors, load balancing, multicore and manycore, numerical

modeling of solidification, OpenMP, workload prediction

1 INTRODUCTION

The phase-field method is a powerful tool for solving interfacial problems in materials science.1 It has mainly been applied to solidification dynamics,2

but it has also been used for other phenomena such as viscous fingering,3 fracture dynamics,4 and vesicle dynamics.1 In our previous paper,5 an

application dedicated to the numerical modeling of alloy solidification, based on the phase-field and generalized finite difference methods, was used

as a testbed in the suitability assessment of various programming environments for porting a real-life scientific application to hybrid shared-memory

platforms with multicore CPUs and manycore Intel MIC accelerators. Two different cases were studied: with the static and dynamic intensity of

computations. In the second case, calculations are performed using a carefully selected group of nodes that is growing in successive time steps. It

was discovered that in this case the efficiency of utilizing computing devices falls significantly. Alleviating this limitation requires the development

of algorithms enabling the dynamic (at runtime) balancing of workloads across available resources.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Concurrency and Computation: Practice and Experience published by John Wiley & Sons Ltd.

Concurrency Computat Pract Exper. 2021;33:e5905. wileyonlinelibrary.com/journal/cpe 1 of 16
https://doi.org/10.1002/cpe.5905

https://orcid.org/0000-0001-9116-8981
https://orcid.org/0000-0001-9953-1319
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.5905&domain=pdf&date_stamp=2020-07-04

2 of 16 HALBINIAK ET AL.

The main goal of this study is to ensure efficient data partitioning and workload distribution across computing resources for the solidification

application with the dynamic computational intensity. To achieve this goal, we propose algorithms that allow us to manage computing resources

during the application execution dynamically. These algorithms are based on predicting the amount of computations performed in the successive

time step of a simulation.

The contributions of this article to areas of parallel computing and high performance computing simulations are as follows:

1. A two-step method for optimizing the performance of the parallel application for the phase-field modeling of alloy solidification on

multi-/manycore architectures in the case of the dynamic intensity of computations. By reducing the number of conditional operators and mod-

ifying the selection criterion in the first step, this becomes possible in the second step to introduce an algorithm for the dynamic workload

prediction and load balancing across cores of a computing platform, in successive time steps.

2. Two versions of the algorithm are proposed—with 1D and 2D computational maps used for predicting the computational domain within the

grid. They allow reducing superfluous operations by adjusting the computational domain to the domain of simulation (or area of grain growth),

as close as possible. These algorithmic solutions ensure a more efficient workload distribution and load balancing across available cores, using

mechanisms provided by the OpenMP environment.

3. An experimental evaluation of the proposed optimizations shows that they allow increasing the application performance significantly for all

tested configurations of computing resources. The highest performance gain is achieved for two Intel Xeon Platinum 8180 CPUs (56 cores

totally), where the usage of 2D map yields the speedup of up to 2.74 times against the basic version, while for a single Intel KNL accelerator this

solution permits reducing the execution time up to 1.91 times.

This article is organized in the following way. Section 2 presents related works, while Section 3 outlines the numerical model, as well as describes

the basic version of the solidification application and provides the analysis of its characteristics. The proposed method of adaptation of the solidifi-

cation application with the dynamic intensity of computations to multi-/manycore architectures is introduced in Section 4, while Section 5 describes

details of developed algorithms for the workload prediction and load balancing. The next section presents the performance evaluation of the pro-

posed approach on platforms with Intel Xeon CPUs and Intel KNL processors (accelerators), including a comparative analysis of the behavior of

different versions of code. Section 7 concludes the article and addresses future works.

2 RELATED WORKS

A fast grow of computing power6 permits modeling complex solidification processes. Examples of this trend are the peta-scale phase-field simu-

lation of dendritic solidification performed on the TSUBAME2.0 supercomputer powered by GPUs,7 as well as large scale phase-field simulations

of Ag-Al-Cu ternary eutectic solidification.8 The approach proposed in the latter work was extended in Reference 9 and 10, which focused on

optimizing the simulation performance, as well as automating the process of code generation. Thus, the presented research is a part of the global

tendency to use modern computing systems for modeling the phase-field phenomena. There are many papers devoted to modeling dendritic solid-

ification phenomena that use such approaches as cellular automata, finite element and finite difference methods.11-13 The significant highlight of

this work is the usage of the generalized finite difference method,14 which allows us to model phenomena where the distribution of nodes in grids

is diversified—concentrated in border areas of the inter-phase, and sparse in areas with a low diffusivity or already solidified.

In our previous works,5,15-18 we dealt with porting and optimization of the phase-field simulations of alloy solidification on shared-memory com-

puting platforms with Intel MIC accelerators, without significant modifications of the original application code. The last two works took advantages

of using both CPUs and KNCs (or KNLs) for the parallel execution of the application, while in the rest of our papers, computational workloads were

assigned to accelerators or CPUs only. Furthermore, the usage of different programming environments was studied—Intel Offload with OpenMP in

References 15 and 18, OpenMP Accelerator Model in Reference 18, and hStreams with OpenMP in Reference 17. Based on these studies, it became

possible5 to carry out a suitability assessment of these environments for porting the solidification application to shared-memory platforms with

multi-/manycore architectures.

This assessment revealed the satisfying efficiency of porting the application for modeling problems with the static intensity of computations.

However, in the case of the dynamic intensity, the efficiency of utilizing computing resources drops significantly. In particular, for the static computa-

tional intensity, the usage of four KNL processors allows us to speed up the application about 3.1 times against the configuration with a single KNL.

At the same time, the performance results achieved in the case of the dynamic intensity indicated pretty large room for further optimizations, as the

utilization of four KNL devices gives only the speedup of about 1.9 times. Alleviating this shortcoming requires enabling the dynamic (at runtime)

balancing of workloads across computing resources.

Providing appropriate load balancing across available resources plays a significant role in optimizing the overall performance of computations

on parallel architectures.19 It allows maximizing the performance of applications by keeping processor idle time and communication overheads

as low as possible. Numerous mechanisms for ensuring efficient workload and data distribution have been developed.20 In applications with con-

stant workloads, static load balancing can be used as a pre-processor to the computation. A common approach to static load balancing is based

on data partitioning.21-24 However, the load balancing problem is not solved completely. It is especially evident in the scientific applications where

HALBINIAK ET AL. 3 of 16

the workloads are unpredictable or change during the execution. Such codes require programmers to develop dynamic strategies of load balancing

that adapt the workload distribution based on changes monitored during the application execution. Dynamic algorithms (such as task scheduling

and work-stealing) do not require a priori information about execution but may incur significant communication overheads due to data migration.

Dynamic algorithms often use static partitioning for their initial step.23

One of the possible ways20 to implement dynamic load balancing is the usage of software toolkits such as Zoltan25 and ParMETIS.26 In this work,

dynamic load balancing is added directly to the application. Compared to using software toolkits, the main advantage of such an approach is its

low overhead because load balancing is integrated directly with mechanisms provided by the OpenMP programming environment.27 The concept

of this integration was drafted in our previous paper,28 where the algorithm for the dynamic workload prediction and load balancing with the 1D

computational map was proposed, but without studying its implementation and efficiency. These topics are studied in this work, which also presents

and investigates another algorithm for workload prediction and load balancing that uses the 2D computational map.

3 NUMERICAL MODELING OF SOLIDIFICATION WITH DYNAMIC INTENSITY OF
COMPUTATION

3.1 Numerical model

In the numerical modeling problem studied in the article, a binary alloy of Ni-Cu is considered as a system of the ideal metal mixture in liquid and solid

phases. The numerical model assumes the dendritic solidification process11,29 in the isothermal conditions with constant diffusivity coefficients for

both phases. It allows us to use the field-phase method defined by Warren and Boettinger.30 In the model, the growth of microstructure during the

solidification is determined by solving a system of two PDEs. The first equation defines the phase content 𝜙:

1
M𝜙

𝜕𝜙

𝜕t
= 𝜀2

[
∇ ⋅ (𝜂2∇𝜙) + 𝜂𝜂

′
(

sin(2𝜃)
(
𝜕2𝜙

𝜕y2
− 𝜕2𝜙

𝜕x2

)
+ 2cos(2𝜃) 𝜕

2𝜙

𝜕x𝜕y

)]

− 1
2
(𝜂′2 + 𝜂𝜂

′′)
(
−cos(2𝜃)

(
𝜕2𝜙

𝜕y2
− 𝜕2𝜙

𝜕x2

)
+ 2sin(2𝜃) 𝜕

2𝜙

𝜕x𝜕y
− 𝜕2𝜙

𝜕x2
− 𝜕2𝜙

𝜕y2

)
− cHB − (1 − c)HA − cor , (1)

where M𝜙 is defined as the solid/liquid interface mobility, 𝜀 is a parameter related to the interface width, 𝜂 is the anisotropy factor, HA and HB denote

the free energy of both components, and cor is the stochastic factor which models thermodynamic fluctuations near the dendrite tip. The coefficient

𝜃 is calculated as follows:

𝜃 = 𝜕𝜙

𝜕y

/
𝜕𝜙

𝜕x
. (2)

The second equation defines the concentration c of the alloy dopant, which is one of the components of the alloy:

𝜕c
𝜕t

= ∇ ⋅ Dc

[
∇c + Vm

R
c(1 − c)(HB(𝜙, T) − HA(𝜙, T))∇𝜙

]
,

where Dc is the diffusion coefficient, Vm is the specific volume, and R is the gas constant.

Transforming these formulas into differential equations is described in our previous paper.18 The solutions of differential equations are then

obtained31,32 using the generalized finite difference method and explicit scheme of calculations with a small time step Δ (we select Δt=10−7 [s]).

For approximating values of partial derivatives in Equations (1) and (2), the second-order Taylor expansion is adopted. In this numerical scheme, an

n-point star (or stencil) is used to provide the “best” approximation of derivatives in the central point of the star.18 As a result, this approach can be

used for both regular and irregular grids.

The resulting computations18 belong to the group of forward-in-time, iterative algorithms since all the calculations performed in the current

time step (t+1) depend on results determined in the previous step t. The application code consists of two main blocks of computations, which are

responsible for determining either the phase content 𝜙 or the dopant concentration c. In the model, the values of 𝜙 and c are determined for grid

nodes distributed across a considered domain. In consequence, the values of derivatives in all nodes of the grid are calculated at every time step.

In the application studied in this article, a 2D regular grid is used with nodes distributed uniformly across a square domain (Figure 1). Hence, each

internal node of the grid has n = 8 neighbor grid elements participating in computations for the corresponding stencils.

In our previous work,18 two different cases were introduced – with the static and dynamic intensity of computations. In the first case, the

workload of computing resources is constant during the application execution, since a constant number of equations is solved. This assumption

corresponds to modeling problems in which the variability of solidification phenomena in the whole domain has to be considered. In the sec-

ond case, the model is able to solve differential equations only in part of nodes, which is changing during the simulation following the growth of

microstructure. The use of a suitable selection criterion allows reducing the amount of computations significantly. The consequence is a significant

workload imbalance since the selection criterion is calculated after the static partitioning of the grid nodes across computing resources.

4 of 16 HALBINIAK ET AL.

F I G U R E 1 Phase content for the simulated time tS=2.75×10−3s

3.2 Basic version of solidification application with dynamic intensity of computations

Listing 1 shows the basic code for the computational core of the application implementing the numerical model of solidification with the dynamic

intensity of computations. This listing corresponds to a single time step. The presented code allows the partial differential equations to be solved

not only for regular, but also irregular grids. In this code, the memory management is organized according to the SOA (structure of arrays) layout

with the computations executed on one-dimensional arrays. For example, node_conc[i] contains value of the dopant concentration for the i-th

node, while node_Dc[i]corresponds to value of the diffusion coefficient for this node. The transformation to the SoA organization of data from

the original array of structures (AoS) layout, which was used in the original code, corresponds to the first step of the design methodology proposed

in work5 and is out of the scope of this article. But it is worth emphasizing that this transformation is vital for developing an efficient code for the

solidification application.

1 #pragma omp parallel {
2 // Computations in boundary nodes for the dopant concentration
3 #pragma omp for
4 for(int i=0; i<grid_size; ++i) {
5 if(node_isBoundary[i])
6 Kernel1;
7 }
8 // Computations in internal nodes for the dopant concentration
9 #pragma omp for

10 for(int i=0; i<grid_size; ++i) {
11 if(!node_isBoundary[i])
12 Check_Condition_1;
13 Kernel2;
14 }
15 // Computations in boundary nodes for the phase content
16 #pragma omp for
17 for(int i=0; i<grid_size; ++i) {
18 if(node_isBoundary[i])
19 Kernel3;
20 }
21 // Computations in internal nodes for the phase content
22 #pragma omp for
23 for(int i=0; i<grid_size; ++i) {
24 if(!node_isBoundary[i])
25 Check_Condition_2;
26 Kernel4;
27 }
28 // Loop completing computations within a time step
29 #pragma omp for
30 for(int i=0; i<grid_size; ++i) {
31 node_Fi0[i] = node_Fi[i];
32 node_conc0[i] = node_conc[i];
33 node_Dc[i] = Ds+fP(node_Fi[i])*(Dl-Ds);
34 }
35 }

Listing 1: General scheme of executing a single time step for the basic version of the application with dynamic intensity of computations

HALBINIAK ET AL. 5 of 16

All computations in the application are organized as five loops. Two of them, with kernels K1 and K3 are responsible for calculations executed

in the boundary nodes, while the other two loops, with kernels K2 and K4, perform computations for the internal part of the grid. The last loop

completes the execution within a single time step. In the basic version of the application shown in Listing 1, each loop iterates over all nodes of the

grid. The selection of the boundary and internal nodes is performed using four conditional operators (lines 5, 11, 18, and 24).

Listings 2 and 3 present code snippets corresponding to kernels K1 and K2 that are responsible for determining the dopant concentration for

the boundary and internal nodes of the grid. For a given grid node i, each of these kernels iterate over the neighbors j of the node. The indices

neighbor_idx of these neighbor nodes are retrieved from the arraynode_e[] describing the geometry of the whole grid. This array is read from

a configuration file before executing the application. The size of the array is the product of the total number of grid nodes (grid_size) and the

maximum number of neighbors (max_neighbors). In the studied application, max_neighbors= 8.

1 const int offset = i∗max_neighbors;
2 double d0(0.0), d2(0.0);
3 double z[max_neighbors];
4 /.../
5 for(int j=0; j<neighbors_count[i]; ++j) {
6 // Stencil computations used to determine partial derivatives
7 z[j] = (node_g2[offset+0]∗node_cosAlf[i]+
8 node_g2[offset+2]∗node_cosBet[i])∗node_hx[offset+j]+
9 (node_g2[offset+1]∗node_cosAlf[i]+

10 node_g2[offset+3]∗node_cosBet[i])∗node_hy[offset+j]
11 const int neighbor_idx = node_e[offset+j];
12 d2 += node_conc0[neighbor_idx]∗z[j];
13 /.../
14 }
15 // Computations executed within nodes
16 /.../
17 node_conc[i] = ...;

Listing 2: Kernel K1

1 const int offset = i∗max_neighbors;
2 const int gOffset = i∗25;
3 double d1xCj(0.0), d1xDcj(0.0), d1xFj(0.0);
4 double zx[max_neighbors];
5 /.../
6 for(int j=0; j<neighbors_count[i]; ++j) {
7 // Stencil computations
8 // 3 of all 15 stencils used in kernel K2
9 zx[j] = 1/pow(node_h[offset+j],2∗m)∗

10 (node_g[gOffset+0]∗node_hx[offset+j]+
11 node_g[gOffset+1]∗node_hy[offset+j]+
12 0.5∗node_g[gOffset+2]∗node_hx[offset+j]∗node_hx[offset+j]+
13 0.5∗node_g[gOffset+3]∗node_hy[offset+j]∗node_hy[offset+j]+
14 node_g[gOffset+4]∗node_hx[offset+j]∗node_hy[offset+j]);
15 const int neighbor_idx = node_e[offset+j];
16 d1xCj += zx[j]∗node_conc0[neighbor_idx];
17 d1xDcj += zx[j]∗node_Dc[neighbor_idx];
18 d1xFj += zx[j]∗node_Fi0[neighbor_idx];
19 /.../
20 }
21 // Computations performed within nodes
22 /.../
23 node_conc[i] = ...;

Listing 3: Kernel K2

The calculations performed in these two kernels are focused around stencil computations. While kernel K1 includes only a single stencil, 15

various stencils can be distinguished in the case of kernel K2. Three of them are presented in Listing 3 in lines 16, 17, and 18. Each of these stencils

updates a corresponding variable in the ith node utilizing values of a certain variable in its neighbor nodes and some temporary variable. In Listing 3,

this temporary variable denoted as zx[j] is computed in lines 9-14 using only data that belongs to the ith node. As shown in Listings 2 and 3, some

calculations are carried out outside the loop iterating over j. These calculations end with determining the value of the dopant concentration in the

ith node for a given time step. The structure of kernels K3 and K4 is analogous; they contain a single stencil and five stencils, respectively. These two

kernels are responsible for calculating the phase content.

6 of 16 HALBINIAK ET AL.

The selection criterion affects the overall performance of the application decisively. In the basic version of the application, the selection criterion

is checked during the execution of kernels K2 and K4, involving two conditional operators. As a result, six conditional operators are performed for

a single time step. Moreover, the presence of the selection criterion leads to the necessity of analysis practically all grid nodes (excluding boundary

ones), and not just nodes within the area of grain growth. For kernel K2, the selection criterion is presented in Listing 4. This criterion is based on

checking the absolute values of differences between values of both dopant concentration and phase content in a given node i and its neighbors. If

none of these differences exceeds a given small threshold value 10−10, then the value of the dopant concentration in the ith node remains unchanged.

For kernel K4, the selection criterion is specified analogously.

1 const int offset = i*max_neighbors;
2 // Calculating differences deltaD and DeltaP for a single stencil
3 double deltaD=0.0;
4 double deltaP=0.0;
5 for(int j=0; j<neighbors_count[i]; ++j) {
6 const int neighbor_idx = node_e[offset+j]];
7 deltaD += fabs(node_conc0[i]-node_conc0[neighbor_idx]);
8 deltaP += fabs(node_Fi0[i]-node_Fi0[neighbor_idx]);
9 }

10 // Checking if the values of deltaD and DeltaP are non-zero
11 if((deltaD<1e-10) && (deltaP<1e-10)) {
12 node_conc[i] = node_conc0[i];
13 continue;
14 }

Listing 4: Check_Condition_1: selection criterion for kernel K1

Summarizing, computations corresponding to kernels K1-K4 of the application are organized as two nested loops. The outer one iterates over

the grid nodes, while the inner loop iterates over neighbors of each node. This loop corresponds to stencil computations used for the determination

of partial derivatives. Since the indices of all neighbors of a given node are kept in the array node_e[] describing the grid, this solution allows the

patterns of all 22 stencils to be determined during the application execution. Furthermore, the structure of these kernels enables their parallelization

using omp parallel for directive of OpenMP27 for the outer loop.

3.3 Analysis of solidification application with dynamic intensity of computations

The solidification application with the dynamic intensity assumes that calculations are performed for a carefully selected group of nodes. The usage

of the selection criterion permits reducing the amount of computations. At the same time, the intensity of computations increases significantly

during the application execution, as is shown in Figure 2, which illustrates the growth of the simulation domain (black area) in successive time steps.

Figure 3 presents characteristics of the application during its execution. The upper plot shows the total number of grid nodes that are processed

in successive time steps, while the bottom plot illustrates the execution time measured after completing subsequent time steps. The analysis of

Figure 3a allows us to conclude that for the first 25% of the execution time, only up to 6% of the grid nodes are actually processed. For the next 50%

of the execution time, the number of processed nodes does not exceed 26% of all grid nodes, and finally, it achieves just over 50%.

Time steps

k = 20000 k = 40000 k = 60000

F I G U R E 2 Growth of simulation domain (black area) for successive time steps

HALBINIAK ET AL. 7 of 16

F I G U R E 3 Characteristics of the
solidification application with dynamic
intensity of computations for grid of size
N = 2000: A, number of grid nodes

computed in successive time steps, and, B,
total time of computations measured after
completing successive time steps on a
platform equipped with two Intel Xeon
Platinum 8180 CPUs

N
u
m

b
e
r

o
f

g
ri
d
 n

o
d
e
s

50000

1000000

1500000

2000000

2500000

3000000

3500000

0

4000000
(A)

P
e
rc

e
n

ta
g

e

100

25

50

75

0
0 20000 40000 60000 80000 100000

Time steps

E
xe

c
u
ti
o
n

ti
m

e
 [

s
]

0 20000 40000 60000 80000 100000

Time steps

200

400

600

0

800

1000

1200

(B)

1400

1600

A key way to improve the overall performance of the considered application is reducing superfluous operations, as well as providing an optimized

workload distribution across computing resources. To this end, a significant modification of the application code is required as the first step. In fact,

the previous subsection shows that six conditional operators are executed for a single time step. Moreover, this leads to the necessity of analysis of

the whole grid, while only the nodes within the area of the grain growth should be considered in the optimal case. Thus, the application code after its

transformation should allow reducing the number of conditional operators, and adjusting the domain of computation to the domain of simulation,

which corresponds to the area of grain growth shown as the black area in Figure 2, as close as possible.

4 OPTIMIZATIONS OF SOLIDIFICATION APPLICATION WITH DYNAMIC INTENSITY OF
COMPUTATIONS FOR MULTI-/MANYCORE ARCHITECTURES

4.1 General concept of adaptation

Based on the results of the application analysis presented in the previous section, we develop a method for optimizing the solidification application

with the dynamic intensity of computations on multi-/manycore architectures with shared memory. This method includes two basic steps:

1. Modification of the application code using the loop fusion technique, in order to reduce the number of conditional statements. This modification

is vital to implement the second step.

2. Introduction of an algorithm for predicting the domain of computations in successive time steps, in order to:

• reduce the amount of operations required to check the selection criterion;

• ensure an efficient workload distribution and load balancing across resources of the computing platform.

4.2 Step 1: Modification of computational scheme

The first step of the proposed method includes the modification of the application source code using the loop fusing technique.33 Listing 5 presents

the modified code for a single time step of the solidification application. In contrast to the basic version of code (Listing 1), all workloads of the

8 of 16 HALBINIAK ET AL.

modified version are executed in a single nested loop. Such a solution allows us to reduce the number of conditional statements used to checking the

selection criterion, as well as the number of conditional operators corresponding to selecting boundary and internal nodes (from four operators to a

single one). Additionally, the copying of data, which is performed within the loop completing the execution of each time step, is replaced by swapping

arrays using pointers.

1 #pragma omp parallel for
2 for(int i=0; i<grid_size; ++i) {
3 Check_Condition;
4 // Computations performed within a grid node
5 if(node_isBoundary[i]) {
6 // Execution of the kernels K1 and K3 corresponding to the boundary nodes
7 Kernel1;
8 Kernel3;
9 }

10 else {
11 // Execution of the kernels K2 and K4 corresponding to the internal nodes
12 Kernel2;
13 Kernel4;
14 }
15 }
16 // Completing computations with swaping arrays using pointers
17 swap(node_conc, node_conc0);
18 swap(node_Fi, node_Fi0);
19 swap(node_Dc, node_Dc0);

Listing 5: Solidification application with dynamic intensity of computations after the first step of the proposed method

This transformation of source codes also requires a suitable modification of the selection criterion. Listing 6presents the selection criterion for

the modified code. It corresponds to the fusion of the selection criteria used for kernels K2 and K4 in the basic code. Moreover, due to removing the

loop completing each time step, additional calculations are performed in the modified selection criterion (Line 14 in Listing 6).

1 const int offset = i*max_neighbors;
2 // Calculating differences deltaD and DeltaP for grid nodes within a single stencil
3 double deltaD=0.0;
4 double deltaP=0.0;
5 for(int j=0; j<neighbors_count[i]; ++j) {
6 const int neighbor_idx = node_e[offset+j]];
7 deltaD += fabs(node_conc0[i]-node_conc0[neighbor_idx]);
8 deltaP += fabs(node_Fi0[i]-node_Fi0[neighbor_idx]);
9 }

10 // Checking values of deltaD and DeltaP
11 if((deltaD<1e-10) && (deltaP<1e-10)) {
12 node_conc[i] = node_conc0[i];
13 node_Fi[i] = node_Fi0[i];
14 node_Dc0[i] = Ds+fP(node_Fi[i])*(Dl-Ds);
15 continue;
16 }

Listing 6: Check_Condition: selection criterion after modification

In the application code shown in Listing 5, the selection criterion is still calculated for all nodes of the grid. However, this code permits us to intro-

duce an algorithm for workload prediction. Such an algorithm is responsible for adjusting the domain of computations to the domain of simulation.

In consequence, it allows ensuring more efficient workload distribution and load balancing across resources of a computing platform.

4.3 Step 2: Prediction of the domain of computations

The second step of the proposed method embraces the prediction of the computational domain. It is responsible for determining the computational

workload for successive time steps of the simulation. In practice, it allows adjusting the computational domain to the domain of simulation (black

area in Figure 2). The computational domain refers to the grid area wherein the primary computations (including stencil workloads) are performed,

as well as the selection criterion is checked. The prediction of the workload for the next time step (t+1) is based on the results of computations

performed in the current step t. In practice, if values of variables in a grid node are computed in a given time step, this node and its neighbors are

taken into consideration when predicting the computational domain for the next step.

HALBINIAK ET AL. 9 of 16

Predicting the computational domain is vital for ensuring the efficient workload distribution across computing resources (cores). In the

basic version of the application, the selection criterion is checked for the whole grid. It leads to an undesirable situation (Figure 4) when

some cores spend most of the time on checking the selection criterion, while only a part of cores perform primary computations within

grid nodes. The modification of the application code accomplished in the first step allows the usage of the algorithm for workload predic-

tion, to resolve this problem. As a result, the selection criterion will be checked only for the nodes within the predicted domain of compu-

tation. This solution ensures a more efficient workload distribution across cores since each core will perform primary computations within

the domain of simulation in successive time steps. Figure 5 illustrates two versions of the algorithm for workload prediction proposed in this

work.

F I G U R E 4 Areas of simulation and checking
the selection criterion in successive time steps, for

the basic version as well as the version obtained
after the first step

area of checking the selection criterion domain of simulation

growth of simulation domain in the next time step

Time step k

ak

bk

dk
ck

Time step k+1

a(k+1)

b(k+1)

d(k+1)
c(k+1)

(b k - a k) ≤ (b (k+1) - a (k+1))

(d k - c k) ≤ (d (k+1) - c (k+1))

F I G U R E 5 Predicting domain of
computation in successive time steps with,
A, 1D and, B, 2D maps predicted area of checking the selection criterion for the next time step

area of checking the selection criterion domain of simulation

predicted area of simulation domain growth for the next time step

(B)

maxCol kminCol k

minRow k

maxRow k

Time step k

maxCol (k+1)minCol (k+1)

minRow (k+1)

maxRow (k+1)

Prediction:
Time step k+1

(A)

Time step k

minNode k

maxNode k

minNode (k+1)

maxNode (k+1)

Prediction:
Time step k+1

10 of 16 HALBINIAK ET AL.

5 ALGORITHMS FOR WORKLOAD PREDICTION AND LOAD BALANCING

5.1 Prediction with 1D map

The first version of the workload prediction algorithm (Figure 5A) is based on the representation of grid nodes using a 1D array. Thus, the predicted

area wherein the selection criterion is checked for a given time step is specified by two coordinates corresponding, respectively, to the beginning

(minNode) and end (maxNode) of the area. Listing 7 presents the algorithm for determining these coordinates for the next times step (t+1) of simu-

lation while executing the current step t. The analysis of Listing 7 permits us to conclude that overheads introduced by the prediction algorithm are

negligible. In particular, the integer calculations performed in Lines 8-9 can be executed by integer ALU units of cores simultaneously with the pri-

mary computations performed by floating-point units. For the first time step (t=1), the area of checking the selection criterion includes the entire

grid. In this case, minNode = 0 and maxNode = grid_size. Then, starting from the second time step (t=2), the selection criterion is checked

only within the area adjusted to the domain of simulation.

1 int min_temp = minNode;
2 int max_temp = maxNode;
3 #pragma omp parallel for reduction(min:min_temp) reduction(max:max_temp)
4 for(int i=minNode; i<maxNode; ++i) {
5 const int offset = i * max_neighbors;
6 // Checking the selection criterion
7 Check_Condition;
8 min_temp = min(i, min_temp);
9 max_temp = max(i, max_temp);

10 // Primary computations
11 if(node_isBoundary[i]) {
12 // Execution of kernels K1 and K3 corresponding to the boundary nodes
13 Kernel1;
14 Kernel3;
15 }
16 else {
17 // Execution of kernels K2 and K4 corresponding to the internal nodes
18 Kernel2;
19 Kernel4;
20 }
21 }
22 if(min_temp - haloSizeTop < minNode)
23 minNode = min_temp - haloSizeTop;
24 if(max_temp + haloSizeDown > maxNode)
25 maxNode = max_temp + haloSizeDown;
26 // Completing computations with swapping arrays using pointers
27 /.../

Listing 7: Implementation of a single time step with workload prediction using 1D map

For parallelizing the execution of code with the 1D map, omp parallel for directive is used for the outer loop, which iterates over nodes of the grid.

Ensuring efficient load balancing across available cores is based on the fact that this directive now embraces not the entire grid, but only the interval

from minNode to maxNode. An essential role in adapting the way of distributing the workload across cores to properties of a particular computing

platform plays the usage of a suitable scheduling clause. It is responsible for controlling the policy of assigning loop iterations to cores while executing

omp parallel for directive. It was evaluated experimentally that the dynamic scheduling option with the size of chunks equal to the size of rows of

the grid is the most efficient for all platforms studied in this article. This setup provides the best overall performance of computations—not only for

the KNL processor but also for configurations with one and two CPUs.

5.2 Prediction with 2D map

In the second version of the algorithm for workload prediction (Figure 5B), the computational domain is approximated using a rectangle which

embraces the rows and columns of the grid. This rectangle is described by four coordinates:

⟨minRow,maxRow,minCol,maxCol⟩, (3)

that correspond to the minimum and maximum index of row and column of the rectangular area, which includes both the domain of executing the

primary computations and area of checking the selection criterion. The algorithm responsible for determining values of these coordinates is shown

HALBINIAK ET AL. 11 of 16

in Listing 8, with minRow=0, minRow=mSize, minCol=0, maxCol=nSize at the beginning of simulation, where mSize and nSize denote the number of

rows and columns in the grid, respectively. Like the previous version, the usage of the 2D map introduces low performance overheads.

1 int minRow_temp = minRow;
2 int maxRow_temp = maxRow;
3 int minCol_temp = minCol;
4 int maxCol_temp = maxCol;
5 #pragma omp parallel for reduction(min:minRow_temp,minCol_temp) reduction(max:maxRow_temp,maxCol_temp)
6 for(int r=minRow; r<maxRow; ++r) {
7 for(int c=minCol; c<maxCol; ++c) {
8 const int offset = (r * nSize + c) * max_neighbors;
9 // Checking the selection criterion

10 Check_Condition;
11 minRow_temp = min(r, minRow_temp);
12 maxRow_temp = max(r, maxRow_temp);
13 minCol_temp = min(c, minCol_temp);
14 maxCol_temp = max(c, maxCol_temp);
15 // Primary computations
16 if(node_isBoundary[i]) { // Execution of kernels K1 and K3 corresponding to the boundary nodes
17 Kernel1;
18 Kernel3;
19 }
20 else { // Execution of kernels K2 and K4 corresponding to the internal nodes
21 Kernel2;
22 Kernel4;
23 }
24 }
25 }
26 if(minRow_temp - haloSizeTop < minRow)
27 minRow = minRow_temp - haloSizeTop;
28 if(maxRow_temp + haloSizeDown > maxRow)
29 maxRow = maxRow_temp + haloSizeDown;
30 if(minCol_temp - haloSizeLeft < minCol)
31 minCol = minCol_temp - haloSizeLeft;
32 if(maxCol_temp + haloSizeRight > maxCol)
33 maxCol = maxCol_temp + haloSizeRight;
34 // Completing computations with swaping arrays using pointers
35 /.../

Listing 8: Implementation of a single time step with workload prediction using 2D map

In the case of the 2D map, ensuring efficient load balancing is based on the fact that omp parallel for directive iterates over a subset of row

indices in the range from minRow to maxRow. Each row includes only the grid nodes with column indices in the interval from minCol to maxCol.

Similar to the 1D version of the map, an essential role in optimizing the overall performance plays selecting a proper scheduling clause. Again for

all studied platforms, it was evaluated experimentally that the dynamic scheduling option yields the best performance, assuming the size of chunks

equal to 1. This size corresponds to a single row of the predicted 2D domain.

5.3 Comparison of the basic version and versions with 1D and 2D maps

Figure 6 shows the comparison of the number of grid nodes analyzed, using the selection criterion, by the basic version of the application (Listing 1),

and versions with 1D and 2D maps (Listings 7 and 8, respectively). These numbers are calculated for the example illustrated in Figures 2 and 3. The

amount of nodes participating in the primary computations in successive time steps of the simulation is also presented in Figure 6 (this amount is the

same for all the versions). The introduction of workload prediction allows reducing significantly the amount of operations required by the selection

criterion. This conclusion applies especially to the initial phase of the simulation.

For the basic version of the code (Listing 1) and the version shown in Listing 5, the selection criterion is calculated for all nodes of the grid, in

successive time steps. At the same time, during the first 25% of the execution time, the amount of grid nodes analyzed by 1D and 2D maps do not

exceed, respectively, 30% and 9% of all nodes. For the next 50% of the execution time, the number of analyzed nodes does not exceed 55% for the

1D map and 30% for the 2D map. In the final phase of the simulation, which includes only 2000 time steps, the selection criterion is checked for all

nodes.

Figure 6 also shows that the usage of the 2D map allows significantly reducing the difference between the number of nodes analyzed with the

selection criterion and the number of nodes participating in the primary computations against the 1D version of the map. For example, in the time

step t=30 000, only 20% of nodes analyzed by the 1D version participate in the primary computations. At the same time, over 60% of examined

nodes participate in the primary computations for the 2D map.

12 of 16 HALBINIAK ET AL.

nodes analyzed for 1D map nodes analyzed for 2D map

nodes participating in the primary computations nodes analyzed in the basic version

N
u

m
b

e
r

o
f

g
ri
d

 n
o

d
e

s

50000

1000000

1500000

2000000

2500000

3000000

3500000

0

4000000

2 20000 40000 60000 80000

Time steps

P
e
rc

e
n
ta

g
e

100

25

50

75

0
100000

F I G U R E 6 Comparison of the
number of nodes analyzed by the
basic versions of the application and
versions with 1D and 2D maps, as well

as the number of grid nodes
participating in the primary
computations in successive time steps

6 PERFORMANCE RESULTS

This subsection presents performance results obtained for the proposed codes assuming the double precision floating-point format. The application

that is tested corresponds to the example shown in Figure 2. It is executed on two platforms (Table 1):

1. SMP consisting of two Intel Xeon Platinum 8180 CPUs (Intel Xeon Scalable Processor architecture), totally with 56 cores;

2. single Intel Xeon Phi 7250F processor with the KNL architecture, consisting of 68 cores.

The KNL processor is used in the quadrant clustering mode, with the MCDRAM memory configured in the flat mode.34 All the bench-

marks are compiled using the Intel icpc compiler (ver. 19.0.1) with -O3 and -xMIC-AVX512 flags for the KNL processor, and -xCore-AVX512

-qopt-zmm-usage=high flags for Intel Xeon CPUs. To ensure the reliability of benchmark results, the measurements of the execution time are

repeated r=10 times, and the median value of measurements is used finally.

Tables 2 and 3 present the total execution time achieved for the four versions of the application: (i) basic version (TB), (ii) version corresponding

to the first step of the proposed adaptation method (TM), and versions with (iii) 1D (T1D) and (iv) 2D (T2D) maps. The tests are performed for 110 000

time steps, and two grid sizes: 2000×2000 and 3000×3000, with the following configurations of computing resources:

1. single KNL processor;

2. single Intel Xeon Platinum 8180 CPU;

3. two Intel Xeon Platinum 8180 CPUs.

Intel Xeon Platinum 8180 (SKL) Intel Xeon Phi 7250F (KNL)

Number of devices 2 1

Number of cores per device 28 68

Number of threads per device 56 272

Base frequency [GHz] 2.5 1.4

(AVX frequency) (1.7) (1.2)

SIMD width [bits] 512 512

AVX peak for DP [GFlop/s] 3046,4 2611,2

LLCa size per platform [MB] 77 34

Memory size per platform 512GB DDR4 16GB MCDRAM

96GB DDR4

Memory bandwidth [GB/s] 119.2 MCDRAM: 400+

DDR4: 115.2

a LLC (last level cache) corresponds to aggregated L2 caches for KNL, and L3 cache for CPUs.

TA B L E 1 Specification of tested
platforms

HALBINIAK ET AL. 13 of 16

TA B L E 2 Total execution times TB,TM,T1D,T2D (in seconds) and speedups achieved for the following versions of the
solidification application with the dynamic intensity of computations: (i) basic version, (ii) version obtained after the first step of

the adaptation method, and versions with (iii) 1D and (iv) 2D maps, assuming the grid of size 2000 × 2000

Computing resources TB TM SM T1D S1D T2D S2D Sf
1D

Sf
2D

1×KNL 1661 1078 1.54 923 1.17 872 1.24 1.80 1.91

1×SKL 1785 1001 1.78 789 1.27 740 1.35 2.26 2.41

2×SKL 1456 837 1.74 619 1.39 531 1.62 2.35 2.74

TA B L E 3 Total execution times (in seconds) and speedups obtained for different versions of the solidification application with

the grid of size 3000 × 3000

Computing resources TB TM SM T1D S1D T2D S2D Sf
1D

Sf
2D

1 × KNL 3869 2540 1.52 2198 1.16 2078 1.22 1.76 1.86

1 × SKL 4061 2359 1.72 1908 1.24 1800 1.31 2.13 2.26

2 × SKL 3266 2005 1.63 1466 1.37 1297 1.55 2.23 2.52

Besides the execution time, both tables present also the following speedups:

• SM=TB/TM—speedup achieved after the first step of the proposed method of adaptation;

• S1D=TM/T1D—speedup obtained by the usage of the second step of the proposed method with the 1D map;

• S2D=TM/T2D—speedup achieved by the usage of the second step of the proposed method with the 2D map;

• Sf
1D

= TB∕T1D—final speedup obtained as a result of using the proposed method with the 1D map;

• Sf
2D

= TB∕T2D—final speedup achieved as a result of using the proposed method with the 2D map.

The analysis of Tables 2 and 3 allows us to conclude that the usage of only the first step of the proposed adaptation method permits increasing

the performance of simulation for all configurations of computing resources. For the smaller grid (2000× 2000), the highest speedup of SM =1.78 is

achieved for the configuration with a single CPU, while the lowest one equal to 1.54 times is obtained on the KNL processor. An analogous conclusion

is also correct for the second grid (3000 × 3000).

Based on the total execution times T1D and T2D achieved for the versions with, respectively, 1D and 2D maps, it can be concluded that the 2D

map gives a better performance than its 1D counterpart. For the smaller of grids, approximating the domain of simulation with the 1D map allows us

to accelerate the application executed on the KNL processor by 1.17 times against the code obtained after the first step of the adaptation method,

and 1.27 and 1.39 times for respectively one and two CPUs. For the 2D map, speedups of respectively 1.24, 1.35, and 1.62 times are achieved. Thus,

the performance advantage of the 2D map is particularly visible for the configuration with two CPUs. For the greater of grids, the performance gain

achieved by introducing the workload prediction step is slightly lower.

The last column of Tables 2 and 3 shows the speedup Sf
2D

obtained by the usage of both steps of the proposed method of adaptation in comparison

with the basic version of the application. The presented values of speedup mean that the proposed method reduces the execution time of simulation

significantly. For the grid of size 2000 × 2000, the highest performance gain is achieved for two Intel Xeon CPUs, where the new code yields the

speedup of about 2.74 times against the basic version. For configurations with a single KNL processor and single CPU, the developed implementation

enables accelerating the simulation by about 1.9 and 2.4 times, respectively. In the case of the grid of size 3000 × 3000, the total performance gain

is slightly lower.

Table 4 presents the comparison of the time spent on primary computations, time of checking the selection criterion, and time spent on building

the map, for the version obtained after the first step of the adaptation method and versions with 1D and 2D maps. These results are shown for the

grid of size 2000×2000 and two configurations of computing resources: (i) single KNL processor, and (ii) two Intel Xeon CPUs. For the KNL processor,

the time spent on the primary (actual) computations practically does not depends on the version of the application. In consequence, the speedup

achieved against the modified version is practically the result of applying the prediction algorithm. In the case of the modified version, checking

the selection criterion takes 354 seconds. The introduction of the second step of the proposed method allows decreasing this time by about 162

seconds and 220 seconds for 1D and 2D maps, respectively. Taking into account a small overhead for building the map (7 seconds for KNL), the total

time related to the selection criterion is 199 and 141 seconds for the versions with 1D and 2D maps. As a result, the selection criterion is executed

1.77 times and 2.5 times faster in comparison with the modified version of the code.

14 of 16 HALBINIAK ET AL.

TA B L E 4 Comparison of time spent on primary (actual) computations, time of checking the selection criterion, and time
spent on building the map, for the grid of size 2000 × 2000

Version of

application

Time spent on primary

computations
Selection criterion

Time of

checking TC

Time of building

map TMAP

Full time

TF = TC+TMAP

Speedup

S = TC /TF

1 × KNL: Listing 5 728 354 — 354 —

1 × KNL: 1D map 729 192 7 199 1.77

1 × KNL: 2D map 734 134 7 141 2.51

2 × SKL: Listing 5 401 438 — 438 —

2 × SKL: 1D map 375 247 2 249 1.76

2 × SKL: 2D map 359 172 2 174 2.52

For the configuration with two Intel Xeon CPUs, the contribution of checking the selection criterion to the overall execution time is considerably

higher than for the KNL processor. It is especially visible for the version shown in Listing 5, when this checking takes 37 seconds longer than the time

spent on actual computations. The usage of the workload prediction algorithm allows decreasing the time of checking the selection criterion from

438 to 247 seconds and 172 seconds for the 1D and 2D maps, respectively. In consequence, the speedup achieved for checking the selection criterion

is practically the same as in the case of the KNL processor. An interesting effect observed for the configuration with two CPUs is the reduction of

the time spent on actual computations with the introduction of the workload prediction. The usage of 1D and 2D maps increases the performance

of executing the primary computations by about 6% and 10%, respectively. Most probably, the reason for this is a better utilization of the cache

hierarchy of CPUs.

Finally, Figure 7 presents the aggregated time of checking the selection criterion for successive packages of R time steps each, achieved for: (a)

Intel Xeon Phi 7250F accelerator, and (b) two Intel Xeon Platinum 8180 processors. The presented charts clearly confirm the effectiveness of the

proposed workload prediction algorithm, as well as better efficiency of the 2D map as compared with the 1D version of the map.

version from Listing 5 version with 1D map version with 2D map

(A)

T
im

e
 [
s
]

0

Successive packages of R time steps each

5 10 15 20 25 30 35 40 45 50

1

2

3

4

0

5

6

7

55

(B)

Successive packages of R time steps each

0 5 10 15 20 25 30 35 40 45 50

T
im

e
 [
s
]

1

2

3

4

0

5

6

7

8

9

10

55

F I G U R E 7 Aggregated time of checking the
selection criterion for successive packages of R time

steps each, achieved for, A, single Intel Xeon Phi 7250F
processor and, B, configuration with two Intel Xeon
Platinum 8180 CPUs

HALBINIAK ET AL. 15 of 16

7 CONCLUSIONS AND FUTURE WORKS

The main challenge of this work is the performance optimization of the solidification application with the dynamic computational intensity when

calculations are performed using a carefully selected group of nodes. For this aim, a two-step method is proposed to increase the application perfor-

mance for multi-/manycore architectures. In the first step, the loop fusion technique is used to permit executing all kernels in a single nested loop, as

well as reducing the number of conditional operators performed within a single time step. These modifications are vital to implementing the second

step, which includes an algorithm for the dynamic workload prediction and load balancing across resources of the computing platform, in successive

time steps.

Two versions of the algorithm are developed—with 1D and 2D computational maps used for predicting the computational domain within the

grid. They allow reducing superfluous operations by adjusting the computational domain to the domain of simulation (or area of grain growth), as

close as possible. These algorithmic solutions ensure a more efficient workload distribution across available cores since each core will perform

primary computations within the domain of simulation in successive time steps.

For parallelizing the code with the 1D map, omp parallel for directive is used for the outer loop, which iterates over nodes of the grid. Ensuring

efficient load balancing across cores is based on the fact that this directive now embraces not the entire grid, but only an interval of nodes—from

minNode to maxNode. A vital role in adapting the distribution of workload across cores to properties of a particular computing platform plays

the usage of a suitable scheduling clause to control the policy of assigning loop iterations to cores. It is evaluated experimentally that the dynamic

scheduling option with the size of chunks equal to the size of rows of the grid is the most efficient for all platforms studied in this article.

In the case of the 2D map, load balancing is based on the fact that omp parallel for directive iterates over a subset of row indices in the range

from minRow to maxRow. Each row includes only the grid nodes with column indices in the interval from minCol to maxCol. Similar to the 1D ver-

sion, an essential role in optimizing the overall performance plays selecting a proper scheduling clause. Again for all studied platforms, the dynamic

scheduling option yields the best performance, but the size of chunks is now equal to 1. This size corresponds to a single row of the predicted 2D

domain.

The achieved performance results show that the proposed optimization method allows increasing the application performance significantly

for all tested configurations of computing resources, with a clear advantage of 2D map over 1D map. The highest performance gain is achieved for

two Intel Xeon Platinum 8180 CPUs, where the new code based on 2D map yields the speedups of 2.74 and 2.52 times against the basic version,

respectively for grids of size 2000 × 2000 and 3000 × 3000. At the same time, the usage of the proposed method with the 2D map for a single Intel

7250F KNL accelerator permits us to reduce the execution time about 1.91 and 1.86 times, respectively.

This work provides the basis for further development and optimization of the solidification modeling application with the dynamic intensity of

computations. The primary direction of our future work is an extension of the proposed approach over the GPU accelerators of different vendors

using the OpenCL framework.35 Also, we are planning to explore CPU36 and GPU37 frequency scaling as a tool to optimize the energy efficiency of

the application.

ACKNOWLEDGEMENTS

This work is supported by the National Science Centre, Poland under grants no. UMO-2017/26/D/ST6/00687 by the project financed within the

program of the Polish Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in the years 2019-2022 (project

no. 020/RID/2018/19, the amount of financing 12 000 000 PLN).

ORCID

Kamil Halbiniak https://orcid.org/0000-0001-9116-8981

Marco Lapegna https://orcid.org/0000-0001-9953-1319

REFERENCES

1. Steinbach I. Phase-field models in materials science. Modelling and Simulation in Materials Science and Engineering. 2009;17(7):073001. http://dx.doi.org/

10.1088/0965-0393/17/7/073001.

2. Provatas N, Elder K. Phase-Field Methods in Materials Science and Engineering. Weinheim, Germany: Wiley; 2010.

3. Folch R, Casademunt J, Hernandez-Machado A, Ramirez-Piscina L. Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast II. numerical

study. Phys Rev E. 1999;60(2):1734-1740.

4. Karma A, Kessler D, Levine H. Phase-Field Model of Mode III Dynamic Fracture. Physical Review Letters. 2001;87(4). http://dx.doi.org/10.1103/

physrevlett.87.045501.

5. Halbiniak K, Wyrzykowski R, Szustak L, Olas T. Assessment of offload-based programming environments for hybrid CPU-MIC platforms in numerical

modeling of solidification. Simulat Modell Pract Theory. 2018;87:48-72.

6. Hager G. Wellein G. Introduction to High Performance Computing for Science and Engineers: CRC Press; 2011.

7. Shimokawabe T, Aoki T, Takaki T, et al. Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer. Paper presented

at: Proceedings of the 2011 ACM/IEEE International Conference High Performance Computing, Networking, Storage and Analysis – SC’11; 2011.

8. Hötzer J, Jainta M, Steinmetz P, et al. Large scale phase-field simulations of directional ternary eutectic solidification. Acta Materialia. 2015;93:194-204.

https://orcid.org/0000-0001-9116-8981
https://orcid.org/0000-0001-9116-8981
https://orcid.org/0000-0001-9953-1319
https://orcid.org/0000-0001-9953-1319
http://dx.doi.org/10.1088/0965-0393/17/7/073001
http://dx.doi.org/10.1088/0965-0393/17/7/073001
http://dx.doi.org/10.1103/physrevlett.87.045501
http://dx.doi.org/10.1103/physrevlett.87.045501

16 of 16 HALBINIAK ET AL.

9. Bauer M, Hötzer J, Jainta M, et al. Massively parallel phase-field simulations for ternary eutectic directional solidification. Paper presented at: Proceed-

ings of the 2015 International Conference High Performance Computing, Networking, Storage and Analysis – SC’15; 2015.

10. Bauer M, Hötzer J, Ernst D, et al. Code generation for massively parallel phase-field simulations. Paper presented at: Proceedings of the 2019

International Conference High Performance Computing, Networking, Storage and Analysis – SC’19; 2019.

11. Adrian H, Spiradek-Hahn K. The simulation of dendritic growth in Ni-Cu alloy using the phase field model. Archiv Mater Sci Eng. 2009;40(2):89-93.

12. Choudhury A, Reuther K, Wesner E, August A, Nestler B, Rettenmayr M. Comparison of phase-field and cellular automaton models for dendritic

solidification in Al-Cu alloy. Comput Mater Sci. 2012;55:263-268.

13. Zaeem M, Yin H, Felicelli S. Modeling dendritic solidification of Al-3%Cu using cellular automaton and phase-field methods. Appl Math Modell.
2013;37(5):3495-3503.

14. Trobec R, Korosec G. Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods. Cham, Switzerland: Springer;

2015.

15. Szustak L, Halbiniak K, Kulawik A, Wrobel J, Gepner P. Toward parallel modeling of solidification based on the generalized finite difference method using

Intel Xeon Phi. 9573 of Proceedings of the 11th International Conference Parallel Processing and Applied Mathematics – PPAM; 2015, Lect. Notes in

Computer Science:411-412.

16. Halbiniak K, Szustak L, Lastovetsky A, Wyrzykowski R. Exploring OpenMP accelerator model in a real-life scientific application using hybrid CPU-MIC

platforms. Paper presented at: Proceedings of the 3rd International Workshop on Sustainable Ultrascale Computing Systems, NESUS 2016; 2016:11-14.

17. Szustak L, Halbiniak K, Kulawik A, Wyrzykowski R, Uminski P, Sasinowski M. Using hstreams programming library for accelerating a real-life application

on intel MIC. 10049 of Proceedings of the International Conference Algorithms and Architectures for Parallel Processing - ICA3PP Lecture Notes in

Computer Science; 2016:373-382.

18. Szustak L, Halbiniak K, Kuczynski L, Wrobel J, Kulawik A. Porting and optimization of solidification application for CPU-MIC hybrid platforms. Int J High
Perform Comput Appl. 2018;32(4):523-539.

19. Laccetti G, Lapegna M, Mele V, Romano D. A high performance modified k-means algorithm for dynamic data clustering in multi-core CPUs based

environments. 11874 of International Conference Internet and Distributed Computing Systems -IDCS 2019:89-99.

20. Devine K, Boman E, Heaphy R, et al. New challenges in dynamic load balancing. Appl Numer Math. 2005;52:133-152.

21. Lastovetsky A, Dongarra J. High Performance Heterogeneous Computing. New York, United States: Wiley; 2009.

22. Lastovetsky A, Reddy R. Data partitioning with a functional performance model of heterogeneous processors. Int J High Perform Comput Appl.
2007;21(1):76-90.

23. Lastovetsky A, Szustak L, Wyrzykowski R. Model-based optimization of EULAG kernel on intel Xeon Phi through load imbalancing. IEEE Trans Parall Distrib
Syst. 2017;28(3):787-797.

24. Szustak L, Bratek P. Performance portable parallel programming of heterogeneous stencils across shared-memory platforms with modern intel proces-

sors. Int J High Perform Comput Appl. 2019;33(3):534-553.

25. Devine K, Boman E, Heaphy R, Hendrickson B, Vaughan C. Zoltan data management services for parallel dynamic applications. Comput Sci Eng.

2002;2:90-96.

26. G. Karypis, Schloegel K. Parallel graph partitioning and sparse matrix ordering library version 4.0.http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/

manual.pdf. Accessed March 30, 2013.

27. OpenMP Application Programming Interface, version 5.0; 2018.https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf.

28. Halbiniak K, Szustak L, Kulawik A, Gepner P. Performance optimizations for parallel modeling of solidification with dynamic intensity of computations.

Paper presented at: Proceedings of the 13th International Conference Parallel Processing and Applied Mathematics – PPAM; 2019. 2020:370-384.

29. Takaki T. Phase-field modeling and simulations of dendrite growth. ISIJ Int. 2014;54(2):437-444.

30. Warren J, Boettinger W. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metallurgica
et Materialia. 1995;43(2):689-703.

31. Benito J, Uren F, Gavete L. The generalized finite difference method. In: Àlvarez MP, ed. Leading-Edge Applied Mathematical Modeling Research. New York,

United States: Nova Science Publishers; 2008:251-293.

32. Kulawik A. The Modeling of the Phenomena of the Heat Treatment of the Medium Carbon Steel. Monographs. Vol 281. Czestochowa: Wydawnictwo Politechnki

Czestochowskiej; 2013 (in Polish).

33. Cardoso J, Coutinho J, Diniz P. Source code transformations and optimizations. Embedded Computing for High Performance: Design Exploration and
Customization Using High-level Compilation and Synthesis Tools. San Francisco, United States: Elsevier; 2017:137-183.

34. Jeffers J, Reinders J, Sodani A. Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition. Elsevier. 2016.

35. Halbiniak J, Szustak L, Olas T, Wyrzykowski R, Gepner P. Exploration of OpenCL heterogeneous programming for porting solidification modeling. Concurr
Comput Pract Exp. 2020; under reviewing.

36. Haj-Yahya J, Mendelson A, Ben Asher Y, Chattopadhyay A. Energy Efficient High Performance Processors Recent Approaches for Designing Green High
Performance Computing. New York, NY, Springer: Springer; 2018.

37. Tang Z, Wang Y, Wang Q, Chu X. The impact of GPU DVFS on the energy and performance of deep learning: an empirical study; 2019. arXiv:1905.11012.

How to cite this article: Halbiniak K, Olas T, Szustak L, Kulawik A, Lapegna M. Dynamic workload prediction and distribution in numerical

modeling of solidification on multi-/manycore architectures. Concurrency Computat Pract Exper. 2021;33:e5905. https://doi.org/10.1002/

cpe.5905

http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf
https://www.openmp.org/wp%2010content/uploads/OpenMP%2010API%2010Specification%20105.0.pdf
https://doi.org/10.1002/cpe.5905
https://doi.org/10.1002/cpe.5905
https://doi.org/10.1002/cpe.5905
https://doi.org/10.1002/cpe.5905
https://doi.org/10.1002/cpe.5905

