
Special Issue Paper

CFD code adaptation to the FPGA
architecture

Krzysztof Rojek , Kamil Halbiniak and Lukasz Kuczynski

Abstract
For the last years, we observe the intensive development of accelerated computing platforms. Although current trends
indicate a well-established position of GPU devices in the HPC environment, FPGA (Field-Programmable Gate Array)
aspires to be an alternative solution to offload the CPU computation. This paper presents a systematic adaptation of
four various CFD (Computational Fluids Dynamic) kernels to the Xilinx Alveo U250 FPGA. The goal of this paper is to
investigate the potential of the FPGA architecture as the future infrastructure able to provide the most complex numerical
simulations in the area of fluid flow modeling. The selected kernels are customized to a real-scientific scenario, compatible
with the EULAG (Eulerian/semi-Lagrangian) fluid solver. The solver is used to simulate thermo-fluid flows across a wide
range of scales and is extensively used in numerical weather prediction. The proposed adaptation is focused on the analysis
of the strengths and weaknesses of the FPGA accelerator, considering performance and energy efficiency. The proposed
adaptation is compared with a CPU implementation that was strongly optimized to provide realistic and objective
benchmarks. The performance results are compared with a set of server CPUs containing various Intel generations,
including Intel SkyLake-based CPUs as Xeon Gold 6148 and Xeon Platinum 8168, as well as Intel Xeon E5-2695 CPU
based on the IvyBridge architecture. Since all the kernels belong to the group of memory-bound algorithms, our main
challenge is to saturate global memory bandwidth and provide data locality with the intensive BRAM (Block RAM) reusing.
Our adaptation allows us to reduce the performance per watt up to 80% compared to the CPUs.

Keywords
CFD, FPGA, energy efficiency, parallel computing, code adaptation, numerical weather prediction

1. Introduction

FPGA devices have proven achievements in many research

and business areas, including cryptography, network rout-

ing algorithms, machine, deep learning and video pro-

cessing (Xilinx Intellectual Property, 2020). The new

challenge is to indicate the usability of FPGA for a new

area such as CFD (Alveo Accelerator Card Applications,

2020).

The goal of this paper is to design and develop a proof of

concept that allows users to evaluate the performance and

energy efficiency of FPGA cards for CFD codes. CFD is an

important branch of fluid dynamics (Xiang et al., 2017). It

applies various kinds of discrete mathematical methods to

analyze and simulate problems in fluid mechanics with the

use of a computing machine. CFD facilitates the research-

ers to quantify and predict the effects of heat flow, mass

transfer, phase change, chemical reaction, mechanical

movements, and stresses in the displacement of solids

(Zhai, 2019). Moreover, it enables the building service

engineers and architects to offer contented and safe human

environments, power-plant designers to attain maximum

efficiency and reduce the release of pollutants. It also sup-

ports chemical engineers to maximize the yields from reac-

tors and processing equipment, land-air and marine vehicle

designers to achieve maximum performance at low cost

and low risk-and-hazard, analysts and safety engineers to

predict the amount of damage (to structures, equipment,

human beings, animals and vegetation) by natural or

human-made disasters (fires, explosions, and blast waves).

Besides, the CFD simulation also allows the metropolitan

authorities, meteorologists, and oceanographers, as well

as petroleum engineers to detect and predict the fluid

dynamics in their field.

A lot of current benchmarks examines general-purpose

solutions that require very complex customization to be

applied in the target solvers. It makes many promising

Czestochowa University of Technology, Czestochowa, Poland

Corresponding author:

Krzysztof Rojek, Czestochowa University of Technology, Dabrowskiego

69, 42-201 Czestochowa, Poland.

Email: krojek@icis.pcz.pl

The International Journal of High
Performance Computing Applications
2021, Vol. 35(1) 33–46
ª The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020972461
journals.sagepub.com/home/hpc

https://orcid.org/0000-0002-2635-7345
https://orcid.org/0000-0002-2635-7345
mailto:krojek@icis.pcz.pl
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020972461
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020972461&domain=pdf&date_stamp=2020-11-10

results disappointing when the solution is adapted to the

final use-case. In this work, we focus on the development

of fully functional kernels in a real-life scenario. The

advantage of the proposed approach is to support a scien-

tific scenario that is not only a solution, adjusted to the

computing architecture but also a software compatible with

the EULAG (Rojek, 2018) geophysical model.

Our research is focused on stencil algorithms that are

known from its memory-bound nature. In our research, we

unveil the power of one of the most advanced FPGA cards,

which is Xilinx Alveo U250 FPGA (appeared in October

2018) (Xilinx—Adaptable, Inteligent, 2020). Our goal is to

provide highly efficient algorithms that can be simply

deployed to weather forecast models without the need of

rebuilding our kernels. For this reason, we take into account

not only a basic version of an algorithm but also its bound-

ary conditions, considering the computational domain as a

part of a much bigger computing model and provide all the

required, user-flexible configurations that are not always

well adaptable to the architecture.

EULAG (Rojek et al., 2017a) is an established compu-

tational model developed by the group headed by Piotr

Smolarkiewicz for simulating thermo-fluid flows across a

wide range of scales and physical scenarios, such as numer-

ical weather and climate prediction, simulation of urban

flows, areas of turbulence, and ocean currents, etc. EULAG

is a representative of the class of anelastic hydrodynamic

models. The dynamic core of the EULAG model consists of

two parts, including the second-order step of the non-linear

iterative upwind advection scheme (non-oscillatory for-

ward in time) called MPDATA (Multidimensional Positive

Definite Advection Transport Algorithm) and advanced

elliptic solver GCR (Generalized Conjugate Residual)

(Prusa et al., 2008). Recently, the dynamical core of

EULAG has been implemented into COSMO (Consortium

for Small-scale Modeling) weather prediction framework

and is expected to be in operational use (Cosmo Public

area, 2020).

Our work is focused on 4 CFD kernels, including (i) the

first-order step of the non-linear iterative upwind advection

scheme (part of MPDATA), (ii) computation of the psue-

dovelocity for the second pass of the upwind algorithm in

MPDATA, (iii) the divergence part of the matrix-free linear

operator formulation in the iterative Krylov scheme (part of

GCR), and (iv) tridiagonal Thomas algorithm for vertical

matrix inversion inside preconditioner for the iterative sol-

ver (part of GCR). All the kernels use a 3D compute

domain consisted of 7 to 11 arrays. The original contribu-

tion of this work includes:

� systematic adaptation of four CFD kernels to the

FPGA architecture, where all of them are customized

to use in a real-scientific scenario, compatible with

the EULAG solver;

� performance and energy efficiency benchmarks of the

FPGA and CPU platforms based on a group of kernels

characterized by different complexity and parallel

strategy that classifies algorithms into less and more

adaptable to FPGA based on their structure;

� investigation of strengths and weaknesses of the

Xilinx Alveo U250 FPGA as a future candidate to

accelerate current HPC codes.

2. CFD kernels

The MPDATA and GCR parts have different characteris-

tics in terms of parallelization, scalability, and adaptability

(Iserte and Rojek, 2020). For this reason, we investigate

four kernels, where two of them are part of MPDATA and

two are part of GCR. To provide the compatibility with

EULAG, the general-purpose scheme of advection or GCR

has been extended by additional quantities as forces acting

on transported substance (implosion and explosion) and

density vectors of the substance. Also, they allow users to

fully configure border conditions in two scenarios, includ-

ing periodic or open. All the kernels operate on the struc-

tured grid.

2.1. Advection

The first kernel represents the first-order-accurate step of

the advection scheme (Smolarkiewicz, 2006). The advec-

tion algorithm is responsible for simulating the movement

of some material, dissolved or suspended in the fluid. The

algorithm flow with its data dependency graph is shown in

Figure 1. The code snippet of this kernel is shown in Listing

1. This code is responsible for computing a donor-cell

scheme and is used both in the advection, as well as in

pseudovelocity. The presented implementation takes eight

input arrays, including X— nondiffusive quantity (for exam-

ple, temperature of water vapor, ice, precipitation, etc.), V1,

V2, V3—each of them stores the velocity vectors in one

direction: i, j, and k, respectively, Fi, Fe—implosion and

explosion forces acting on a structure of X, D corresponds

Figure 1. Data dependency of the advection algorithm.

34 The International Journal of High Performance Computing Applications 35(1)

to the density, rho defines an interface for the coupling of

COSMO and EULAG dynamic core and is used to provide

the transformation of the X variable. The kernel returns a

single X �� array that stores values of the X field updated in

the current time step.

2.2. Pseudovelocity

The second kernel is responsible for computing the psue-

dovelocity for the second pass of the upwind algorithm. It

returns an approximation of the relative velocity and is

required to provide the second-order-accurate advection

(Rojek and Wyrzykowski, 2017, Smolarkiewicz et al.,

2014). The data dependency graph of this algorithm is

shown in Figure 2. This kernel is the most compute-

intensive from all others considered in this work. It

operates on V1, V2, V3, D, X �� input arrays and returns

pseudovelocities F1, F2, and F3 in i, j, and k dimension,

respectively.

2.3. Divergence

The third kernel is responsible for computing the diver-

gence part of the matrix-free linear operator formulation

in the iterative Krylov scheme (Smolarkiewicz et al., 2014).

This kernel measures the amount of fluid required to flow

in/out of a certain point in a vector field. The output r

represents the divergence. The data dependency graph of

this algorithm is shown in Figure 3. This Kernel is the most

memory-bound, since it takes nine input arrays, returns

one, and executes relatively a small number of computa-

tion. To provide the capability of this kernel with the

EULAG model, we need to extend a basic divergence

scheme. Here the kernel takes as input rho, the same as

in the advection scheme, g1, g2, g3—arrays of the gradient

in i, j, and k dimension of the compute domain, pex,

pexr0� 1, pexc—arrays of pressure (see more details in

Smolarkiewicz et al., 2014), helmc—evaluations of the

Helmholtz operator.

2.4. Thomas algorithm

An important part of the GCR solver is the preconditioner

that accelerates the convergence of the variational scheme

(Ciznicki et al., 2014). The preconditioner employs the

sequential Thomas algorithm to solve tridiagonal systems

of equations with the right-hand side consisting of the

vertical divergence of the generalized vertical gradient

(Piotrowski et al., 2016). The Thomas algorithm is a sim-

plified form of the Gaussian elimination algorithm for the

tridiagonal system of equations. The preconditioner oper-

ates on the diagonal part of the full linear problem. Effec-

tive preconditioning lies at the heart of multiscale flow

simulation, including a broad range of geophysical appli-

cations. This kernel is the most difficult to parallelize since

Listing 1. The code snippet of the donor-cell scheme.

f l o a t donor (f l o a t y1 , f l o a t y2 , f l o a t a)
{ re turn max (0 . 0 f , a)∗ y1 −

(−min (0 . 0 f , a)∗ y2) ;
} / / (. . .)
f o r (i n t i =0 ; i<np ; ++ i){

f o r (i n t k =0; k<l p ; ++k){
f o r (i n t j =0 ; j<mp ; ++ j){

c o n s t r e a l X f 1 i j k p =
donor (xIn (i , j , k) , x In (i +1 , j , k) ,

v1 (i +1 , j , k)) ;
c o n s t r e a l X f 1 i j k =
donor (xIn (i −1, j , k) , x In (i , j , k) ,

v1 (i , j , k)) ;
c o n s t r e a l X f 2 i j k p =
donor (xIn (i , j , k) , x In (i , j +1 , k) ,

v2 (i , j +1 , k)) ;
c o n s t r e a l X f 2 i j k =
donor (xIn (i , j −1,k) , x In (i , j , k) ,

v2 (i , j , k)) ;
c o n s t r e a l X f 3 i j k p =
donor (xIn (i , j , k) , x In (i , j , k +1) ,

v3 (i , j , k + 1)) ;
c o n s t r e a l X f 3 i j k =
donor (xIn (i , j , k−1) , x In (i , j , k) ,

v3 (i , j , k)) ;
xOut (i , j , k)= rho (i , j , k)∗

(x In (i , j , k)−
(f 1 i j k p −f 1 i j k + f 2 i j k p −

f 2 i j k + f 3 i j k p −f 3 i j k)
/D(i , j , k)) ;

} } }

Figure 2. Data dependency of the pseudovelocity algorithm,
where i is from 1 to 3.

Rojek et al. 35

it consists of two steps, where every step has data depen-

dencies between iterations of itself. The implementation is

consistent with the GCR solver adapted to the EULAG

model that is based on the vertical version of the Thomas

algorithm. The data dependency graph of this algorithm is

shown in Figure 4. Here f, dZ, p33, represent diagonals in

the first step, rho, and b are extensions provided for the

compatibility with the COSMO and EULAG models, eZ, f

are used in the second step as a diagonal part of array

together with p that is also the output array. More details

about the Thomas algorithm in the context of the EULAG

model are in Piotrowski et al. (2016).

3. Architecture of the Xilinx Alveo U250
FPGA and programming environment

The Xilinx Alveo U250 FPGA is built on the 16 nm Ultra-

Scale architecture (SDAccel Environment Programmers

Figure 3. Data dependency of the divergence algorithm.

Figure 4. Data dependency of the Thomas algorithm.

36 The International Journal of High Performance Computing Applications 35(1)

Guide, 2019). The key device components that require spe-

cial attention during the adaptation process are described

below. The off-chip memory is organized into four DDR4

memory banks, each of size 16 GB (64 GB of off-chip

memory capacity), connected to one from four Super Logic

Regions (SLRs). All the SLRs consist of 1341K Look-Up

Tables (LUTs) responsible for arithmetic and logic opera-

tions, 2749K registers and 2K blocks of RAM (BRAM),

each of size 36 KB. Four SLRs with memory banks create

the dynamic region available for creating custom accelera-

tors. The clock frequency can vary from 60 MHz to 300

MHz depending on the instruction flow. The off-chip peak

memory bandwidth is 77 GB/s (about 47 GB/s in prac-

tice—see section devoted to the platform description for

more details). The remaining part of the FPGA card

includes the static region containing a deployment shell

that handles device bring-up and configuration over Per-

ipheral Component Interconnect Express (PCIe). The ther-

mal design power (TDP) of this card is 225 W. However, it

can be significantly reduced, especially for memory-bound

algorithms. The architecture of the Alveo U250 is shown in

Figure 5.

As a development environment, we selected an Open

Computing Language (OpenCL) framework (OpenCL

Overview, 2020), as the most portable across different plat-

forms that allows us to provide future extensions of our

code onto a GPU architecture. The OpenCL standard dis-

tinguishes the global memory which is shared by all SLRs

and is represented by the DDR4 memory banks of the

Alveo card. The kernels are processed within SLRs that

in OpenCL are the equivalents of compute units. Data

stored in the global memory are persistent between all ker-

nel calls. The next storage is a local memory that is private

to each compute unit and is represented by the BRAM

memory of FPGA. Finally, private memory is local to each

thread created within a compute unit and is represented by

the register file. OpenCL applications run on the Host,

which submit work to the compute devices. The algorithm

processed by the compute device is called a kernel. Each

kernel is managed by the host layer that submits work

(kernels, memory copies) to the FPGA. The submissions

within a single queue are executed synchronously and can

be overlapped with the submissions managed by the other

queue. In contrast to the GPU programming model, here we

create a single thread per each compute unit. The number of

compute units corresponds to the number of SLRs.

4. Systematic adaptation of the kernels to
FPGA

Alveo is an accelerator card designed to meet the con-

stantly changing needs of the modern data center, support-

ing any workload type while reducing the overall cost of

ownership. To confirm the designer’s assumptions, it is

important to verify not only performance and power

metrics but also validate an attainable performance, plat-

form limitations and estimate adaptive possibilities of the

kernels to this architecture.

Our implementation is based on the Xilinx SDAccel

Development Environment (SDAccel Environment Pro-

grammers Guide, 2019) that provides a framework for

developing and delivering FPGA-accelerated data center

applications using standard programming. At this moment,

there are some limitations to the OpenCL standard and some

extensions available in SDAccel. The allocation of the

UltraRAM memory is not supported. We are not able to use

vector data types of type double(n), nor half-precision. For

this reason, we process the data using single-precision arith-

metic with vector data types of size 16 (float16). The exten-

sion of OpenCL defines the blocked version of a new

memory object called a pipe. The pipe stores data organized

as a FIFO. Pipes can be used to stream data from one kernel

to another inside the FPGA device without having to use the

external memory, which greatly improves the overall system

latency. To update the data between the memory banks it is

required to exchange halo areas (borders of sub-domains)

between neighboring sub-domains. For this purpose, we uti-

lized the pipe object. The limitation of this object is that pipe

must be statically defined outside of all kernel functions and

must be declared in lower case alphanumeric. In our version

we use pipes of size 512, that can be defined in the following

way:

pipe int p0 attribute ððxcl reqd pipe depthð512ÞÞÞ;
All the kernels use a 3D compute domain consisted of 7

(Thomas) to 11 (pseudovelocity) arrays. The kernels com-

putations are performed with a stencil fashion (to compute

a single element of computing domain it is required to

access neighboring elements). Since all the kernels belong

to the group of memory-bound algorithms, our main chal-

lenge is to provide the highest utilization of the global

memory bandwidth. For this reason, we design here a set

of methods that allow us to efficiently map the kernels onto

FPGA, including:

� design of the management layer that is executed on a

single CPU core;

� data access optimizations based on 2.5-dimensional

blocking (Rojek et al., 2017b) to improve data

Figure 5. Architecture of the Xilinx Alveo U250 FPGA.

Rojek et al. 37

locality and minimize data transfer between the glo-

bal memory and BRAM;

� utilization of the burst memory access to hide the

memory access latency and improve bandwidth

usage, as well as efficiency of the memory controller;

� reduction of memory pins—31 available handlers to

the global memory.

4.1. Design of the management layer

The process of the adaptation begins with design the man-

agement part of the application that is based on the same

engine for each kernel. Here we create two layers, includ-

ing the host layer designed for a single CPU-core execution

and the device layer for a kernel execution. Our basic

implementation supports a memory allocation with the

Xilinx recommendations, where all arrays are 4 KB

aligned. We regularly flush the command queue and use

the OpenCL method called Migrate memory object to send

a set of arrays from the host memory to the FPGA global

memory. To receive a single array from the device we use a

copy buffer.

The Alveo U250 FPGA consists of four global memory

banks, where each of them is connected to a single SLR. To

address this design the compute domain is divided into four

sub-domains, where each of them is assigned to a separate

memory bank. Each kernel is distributed across four com-

pute units assigned to a different SLR. In this way, the

memory transfers between the global memory and compute

units occurs only between connected pairs of SLR and

memory bank. To exchange data between kernels we create

six pipe objects, where a pair of them is used to data

exchanging between the first and second kernel, another

pair between second and third, and the last pair between

third and fourth kernel. We use a pair of the pipe objects,

where the first one is dedicated for sending, while the sec-

ond one is dedicated for receiving the halo area. The man-

agement part of the application is shown in Figure 6, while

the communication within the device layer is shown in

Figure 7.

4.2. 2.5-Dimensional blocking

To minimize the global memory traffic we utilize a fast

BRAM memory. The characteristic of stencil computation

requires to access a single element of each array many

times to compute a single cell. Since there is not enough

memory space to store a reasonable size of 3D blocks of

compute domain, we apply a 2.5D blocking technique

(Rojek et al., 2017b) to provide data locality. For this pur-

pose, we only store a small set of 2D planes for each array

(see Figure 8) as a queue of planes. After each iteration that

Figure 6. Design of the management layer.

38 The International Journal of High Performance Computing Applications 35(1)

traverses the algorithm across the third dimension, only a

single plane is downloaded from the global memory, while

others migrate across the queue. In this way, the global

memory traffic is significantly reduced, while the BRAM

usage is increased.

Considering a stencil dependent on r top and bottom

elements and a compute domain of height N, we can reduce

the memory traffic 3�r�N
3�rþN�1

times. When N is large and

r ¼ 1 the global memory traffic is reduced three times.

4.3. Burst memory access

To provide a high memory bandwidth it is required to use

data access in a burst memory mode. For this reason, a few

conditions need to be fulfilled: (i) loop pipelining, (ii) using

512-bit memory access, (iii) limit the number of data

accesses per iteration.

The first optimization is to create a pipeline across itera-

tions of a loop. It can be implemented with the optimization

directive attribute ððxcl pipeline loopÞÞ. This method is

used to enhance the performance of the hardware function,

allowing pipelining which substantially increases the per-

formance of the function. The pipeline is responsible for

processing a single iteration in each clock cycle. To ensure

fully pipelining it is required to remove dependencies

between the iterations and use up to two data accesses per

iteration for each array.

Another optimization is to generate a 512-bit AXI4

memory interface for global memory access. For this pur-

pose, we reorganize the computation to utilize vector data

types of size 16. Since the kernels belong to a group of

stencil algorithms, where a set of neighboring elements

need to be accessed to compute a single output, we need

to reorganize data by shifting them to the left or right within

a 16-elements vector. We can not use here a standard

OpenCL shuffle routine, because it is not supported by the

Xilinx compiler. For this reason, we implemented our ver-

sion of this instruction that shifts data by a single element to

the left/right within the vector. The method of shifting

elements to the left is shown in Listing 2. Here we move

every element to its neighbor. To provide a parallelization

for each iteration we use a full loop unrolling.

Figure 7. Communication within the kernel layer.

Figure 8. 2.5D blocking on BRAM: (i) 2D planes are migrated
within the BRAM (step 1, 2); (ii) a single plane is downloaded from
the global memory (step 3).

Listing 2. Shift elements by 1 to the left within a vector.

a t t r i b u t e ((a l w a y s i n l i n e)) f l o a t 1 6
s h i f t L e f t (c o n s t f l o a t 1 6 a ,

c o n s t f l o a t b) {
c o n s t f l o a t ∗ p t r 1 =(f l o a t ∗)&a ;
f l o a t 1 6 o u t ;
f l o a t ∗o =(f l o a t ∗)& o u t ;

a t t r i b u t e
((o p e n c l u n r o l l h i n t (1 5)))
f o r (i n t i =0 ; i <15; ++ i)

o [i]= p t r 1 [i + 1] ;
o [1 5] = b ;
re turn o u t ;

}

Rojek et al. 39

The proposed routine is fully pipelined (each routine call

can be started in every clock cycle) and takes two clock

cycles only. The information of this timeline can be

extracted from the Xilinx compiler that generates the fol-

lowing log generated for this routine.

Pipelining result : Target II ¼ 1,

Final II ¼ 1,

Depth ¼ 2.

Here, the target, final, and depth parameters represent

the number of clock cycles resulted from the dependency,

latency between the iterations, and depth of the pipeline,

respectively.

The disadvantage of BRAM is that they have a limited

number of data ports, typically up to two. It means that the

number of accesses per iteration needs to be limited up to

two to fully utilize the pipelining. The right memory access

can be ensured by using the array partition into smaller

arrays, improving the data structure by providing more data

ports and allowing a higher performance pipeline. For some

codes, it is required to redesign them by splitting the loop

into two or more, where each loop operates on the right

number of memory ports. Thanks to an appropriate loop

splitting, we achieved a fully pipelined instructions flow,

where a depth of pipelines takes up to 92 clock cycles for

different blocks of instructions and takes:

Pipelining result:

Target II ¼ 1, Final II ¼ 1, Depth ¼ 14.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 22.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 14.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 14.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 14.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 3.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 92.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 22.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 22.

Target II ¼ 1, Final II ¼ 1, Depth ¼ 73.

. . .

The depth parameter influences LUTs utilization. A big

disproportion of its value can have an impact on low

resources utilization. However, the loop splitting elimi-

nates the pipeline conflict and allows us to provide the burst

memory access for all the arrays. The execution time t

expressed in the number of clock cycles required to com-

pute a single loop can be estimated based on the following

equation:

t ¼ n � f þ d � f ð1Þ

Here, n is the number of iterations per loop, f is the para-

meter f inal of a pipeline, while d is depth of the pipeline. To

reduce the impact of the pipeline depth on the execution time

we use the loop blocking technique with a block of size 2048.

In this way, the highest overhead of the pipeline depth

(92 clock cycles) takes 2048=ð2048þ 92� 1Þ � 100 < 5%

of the execution time.

4.4. Reduction of memory pins

In the Alveo U250 FPGA, we have 31 available memory

pins. The pins are reserved by pointers to the global mem-

ory used as kernel arguments. They are also reserved by the

returned value of the kernel, and finally by the pipe objects

used to exchange data between the kernels. In this way, we

can not set from 7 to 11 input/output arrays by separate

pointers. Assuming that we create 4 kernels and 6 pipe

objects, the number of kernel arguments can not exceed

5. To solve this problem we packed a set of arrays into a

single memory buffer. In this way, we reduce the number of

memory pins. The code snippet of the pointers management

on the buffer of the input arrays is shown in Listing. 3.

5. FPGA platform and testing
methodology

The efficiency of the proposed adaptation is examined on a

server equipped with a single Xilinx Alveo U250 FPGA

card and two Ivy Bridge-based Intel Xeon E5-2695 CPUs

(12 cores clocked at 2.4 GHz each). To provide all the

hardware requirements for the development and deploy-

ment of the code, the server contains 500 GB of hard disk

space and 80 GB of RAM. The runtime environment is

based on the Ubuntu 16.04 OS, Xilinx runtime shell for

the FPGA management, as well as Xilinx SDAccel Inte-

grated Development Environment framework (version

2018.3).

In this work, we compare the performance of the FPGA

card with a set of Intel Xeon CPUs, including:

� 1x and 2x Intel Xeon E5-2695-based Ivy Bridge CPUs;

� 1x Intel Xeon Gold 6148 CPU with Skylake micro-

architecture (20 cores clocked at 2.4 GHz);

� 1x Intel Xeon Platinum 8168 CPU-based Skylake (24

cores clocked at 2.7 GHz).

To provide objective performance comparisons, we use

highly tuned CPU versions of the CFD kernels. The CPU

implementation is tuned concerning performance and

energy consumption. However, we focused here on the

Listing 3. Snippet of code responsible for the memory
management with pin reduced. The offset object is used to
move to another array.

/ / D e c l a r a t i o n o f t h e f u n c t i o n
void a d v e c t i o n (g l o b a l f l o a t 1 6 ∗ u1 ,

g l o b a l f l o a t 1 6 ∗ u2 ,
g l o b a l f l o a t 1 6 ∗ u3 ,

(. . .)
/ / Arguments l i s t
d e f i n e a r g L i s t g l o b a l f l o a t 1 6 ∗ buf
(. . .)
/ / F u n c t i o n c a l l
a d v e c t i o n (buf , buf + o f f s e t , buf + o f f s e t ,
(. . .)

40 The International Journal of High Performance Computing Applications 35(1)

code optimizations, without methods of platform adapta-

tion, such as Dynamic Voltage and Frequency Scaling

(DVFS) (Rojek et al., 2017c). The CPU versions are imple-

ments using OpenMP (OpenMP—Home, 2020) to utilize

all available cores of CPUs. Beside the parallelization, the

CPU versions are optimized with a set of commonly used

techniques, including:

� thread affinity to avoid thread migration across CPU

cores;

� loop transformations to provide cache reusing and

auto-vectorization;

� memory alignment for efficient data access;

� compiler optimizations.

In the CPU benchmarks, all the codes are compiled

using the GNU Gþþ compiler (ver. 5.4.0).

The performance of all the studied CFD kernels is

described using a throughput expressed in GB/s. The

throughput represents the size of the output data returned

in every time step of the simulation per second. To reduce

the measurement error, all the experiments are repeated

10 times, and the median values are presented as the final

result.

Beyond the performance, we have also investigated the

power dissipation for the Alveo card, as well as all the

considered CPUs. To compare the results obtained on the

platforms we use the performance per watt metric. To mea-

sure power consumption for the FPGA accelerator we uti-

lize the Xilinx Board Utility and Vivado Design Suite tools.

At the same time, for the CPUs, the power dissipation is

measured using the Intel RAPL (Running Average Power

Limit) (Rojek et al., 2017a) infrastructure.

It should be noted that in the case of the FPGA, the

power measurements include the power dissipation of the

FPGA, the host memory, as well as the CPU, where the

management layer is executed using a single CPU core.

The CPU benchmarks are measured based on the power

dissipation of all the CPU cores and host memory.

6. Experimental results

6.1. Benchmarking CFD codes

The first part of the performance examination is based on

the estimation of the scalability of each kernel depending

on the size of the compute domain. All the tests are exe-

cuted for 5000 time steps with different sizes of the com-

pute domain. The conclusion here is that the performance

quickly converges to the maximum throughput for all the

kernels except the Thomas algorithm. The difference

between the performance achieved for a small compute

domain and the big once’s varying from 5% for pseudove-

locity up to 50% for Thomas. The scalability of the kernels

is shown in Figure 9.

The second part includes the comparison of perfor-

mance results between all the platforms, including FPGA

and CPUs. In this test, we configure the kernels with the

compute domain size of 1020� 512� 64 and 5000 time

steps. The results are shown in Figure 10. The performance

of advection and pseudovelocity kernels is the highest on

the FPGA card. The structure of those algorithms allows

programmers to intensively reuse BRAM, which reduces

global memory traffic. The different situation is in the

divergence algorithm, where data dependencies enforce

to keep a large set of arrays for the entire process of simu-

lation in BRAM. For this algorithm, the CPU platform is

Figure 9. The comparison of performance achieved for all the CFD kernels executed on Xilinx Alveo U250 FPGA with different sizes
of the compute domain.

Rojek et al. 41

more appropriate than FPGA due to a larger size of cache

memory. The performance results achieved for the diver-

gence algorithm show that the FPGA provides higher per-

formance of computations compared only with the platform

equipped with the Intel Xeon E5-2695 CPUs. From the

other side, the Thomas algorithm, which is based on the

vertical implementation is poor parallelizable. For this rea-

son, we do not notice the significant performance gain

between the CPU platforms, and we achieve relatively low

performance for FPGA. Due to the low parallelization, a

more important feature is a clock frequency, which is much

higher in CPU than in FPGA.

The last part is devoted to the analysis of the perfor-

mance per watt ratio achieved for all the platforms. Here,

the memory-bound nature of the algorithm results in low

power consumption of the FPGA card. The comparison of

this metric is shown in Figure 11. Here, all the kernels

achieve higher performance on FPGA than on CPUs. The

conclusion is that the CFD codes are well adaptable for

Alveo FPGA cards, especially in terms of performance per

watt ratio. A low clock frequency (300 MHz) allows us to

significantly reduce the power dissipation of FPGA and

overtake the CPU platforms even for the kernels that are

not well adaptable to the FPGA architecture.

Figure 10. Performance achieved for all the CFD kernels on different platforms.

Figure 11. Performance per watt achieved for all the CFD kernels on different platforms.

42 The International Journal of High Performance Computing Applications 35(1)

6.2. Discussion

In general, all the CFD kernels contain suitable properties

for the FPGA architecture. The summary of the FPGA-

CPUs comparisons is shown in Table 1. Here we include

the performance and performance per watt comparison of

the results achieved using Xilinx Alveo U250 FPGA and

achieved on the remaining CPU platforms. The results are

expressed as a speedup, defined as S ¼ PFPGA=PCPU ,

where PFPGA and PCPU refer to the performance of

achieved on the FPGA card and CPU platform, respec-

tively. The R ratio is defined as R ¼ RFPGA=RCPU , where

RFPGA and RCPU correspond to performance per watt of

FPGA and CPUs, respectively.

In detail, we distinguish three core differences between

the code adaptation to CPU and FPGA. The first one is a

large cache memory space of CPU versus a relatively small

but ultra-fast BRAM of FPGA. It gives an advantage for

kernels where the same memory space can be reused to

store different arrays of computing domain depending on

the kernel stage. To this group belongs advection

(S 2 ½1:02; 3:22�, R 2 ½2:54; 4:67�) and pseudovelocity

(S 2 ½1:29; 3:93�, R 2 ½3:15; 5:43�). Here a data locality

is sufficiently provided by the 2.5D blocking technique

that allows us to reduce data traffic between the global

and local memory. In contrast, the divergence kernel

(S 2 ½0:61; 1:93�, R 2 ½1:54; 3:05�) requires to keep many

arrays of computing domain in the local memory through

the entire process. This property makes the algorithm more

convenient for implementation using the CPU-based pro-

gramming model. The second differentiator of FPGA is

lower frequency but higher parallelism than in CPU. A

really large set of FPGA LUTs allows us to efficiently

overlap computations with data transfers by using an inten-

sive pipelining with dual memory access. For most kernels,

this method provides a higher performance on FPGA

clocked at 300 MHz than the considered CPUs clocked

from 2.4 to 2.7GHz. Only for the Thomas operator

(S 2 ½0:77; 1:37�, R 2 ½1:93; 2:31�), the parallelization

could not be sufficiently utilized both on CPU and FPGA

due to the data dependencies. For this reason, the CPU-

based platforms obtained higher performance than FPGA

thanks to higher clock frequency. From the energy effi-

ciency perspective, the low frequency and memory-bound

nature of the algorithm allow us to achieve much better

results on FPGA than CPU. The third difference is the

memory hierarchy that is especially important for the

memory-bound algorithm. In the considered CFD algo-

rithms the bottleneck is the global memory access. FPGA

contains integrated global memory with the accelerator and

provides a parallel utilization of all memory banks by direct

access from kernel code. Thanks to this solution the attain-

able bandwidth of the FPGA global memory is higher than

the bandwidth of external RAM used by CPU.

7. Related work

To the best of our knowledge, this is the first work describ-

ing a real-scientific CFD code adaptation to the Xilinx

Alveo FPGA cards. The proposed adaptation uses a high-

level synthesis based on the OpenCL standard. In contrast

to basic applications, our adaptation operates on a large set

of arrays, which implies complex data dependencies and

requires appropriate management of hardware resources.

There are some works that focus on the adaptation of

stencil computations to the FPGA architecture using an

OpenCL-based solution. In Waidyasooriya et al. (2017),

Sano et al. (2014), Luzhou et al. (2012), Okina et al.

(2016), and Waidyasooriya and Hariyama (2016) the

authors propose libraries containing basic stencils, includ-

ing Jacobi (in all the papers excluding Waidyasooriya and

Hariyama, 2016) and FDTD (in Waidyasooriya and Har-

iyama, 2016; Waidyasooriya et al., 2017). The results show

that the FPGA is a promising architecture for the presented

algorithms. However, there is no investigation of real-

scientific scenarios that usually require to provide strong

customization of basic methods and extend them to be

compatible with scientific models. More arrays generate

new problems with the process of adaptation such as man-

agement of memory pins and a complex data dependency

scheme.

A very recent paper (de Fine Licht et al., 2019) investi-

gates a high-level synthesis on the FPGA platform. The

authors propose a model to optimize the Matrix Matrix

Multiplication (MMM) algorithm. Although MMM usually

belongs to a group of compute-bound algorithms, the most

important part of optimizations is devoted to data move-

ments. This work confirms that a key role in the high-level

programming of FPGA is an appropriate data organization

and pipeline utilization.

de Fine Licht et al. (2018) provide another OpenCL-

based approach to the implementation of MMM and Jacobi

to the FPGA architecture. Beyond the pipelining, and data

locality the authors focus on vectorization, and streaming

Table 1. Comparison of performance (ratio S) and performance per watt (ratio R) metrics between FPGA and CPUs.

Advection Pseudovelocity Divergence Thomas

Computing device S R S R S R S R

Intel Xeon E5-2695 3.22 4.67 3.93 5.43 1.93 3.05 1.37 2.31
2 � Intel Xeon E5-2695 1.70 4.86 2.02 5.46 1.01 3.07 0.79 2.67
Intel Xeon Gold 6148 1.20 2.70 1.71 3.77 0.76 1.74 0.78 1.87
Intel Xeon Platinum 8168 1.02 2.54 1.29 3.15 0.61 1.54 0.77 1.93

Rojek et al. 43

dataflow. The results show strong hardware utilization.

However, there are no details about the adaptation process

to the FPGA, since the optimizations are only generally

described.

A possible alternative to the use of FPGA devices is

described in Montella et al. (2016, 2017). The authors

focused on techniques and virtualization tools of CPUs or

GPUs on low-power devices such as the ARM processors.

The authors conclude that applications with heavy compu-

tation requirements, small-sized input/output problems,

and non-strictly real-time could be the best candidates for

low-power devices.

In the last few years, papers devoted to the adaptation of

the EULAG model to CPU and GPU architectures have

appeared. The CPU-based implementations of solving par-

tial differential equations in 3D space for Numerical

Weather Prediction (NWP) problems were presented in

Prusa et al. (2008), Rojek et al. (2015), and Wojcik et al.

(2012). As the GCR elliptic solver is one of the most sig-

nificant parts of the EULAG model, several different tech-

niques for porting this solver to a cluster with multicore

CPUs have been discussed in (Ciznicki et al., 2014). The

proposed techniques rely on porting the original MPI code

to a hybrid version which combines MPI and OpenMP.

Here we investigated the new architecture to solve this

problem. The EULAG model constantly evolves, and the

current version is not fully applied to the GPU. For this

reason, we provided a performance comparison of the

FPGA-based implementation with the CPU-based code.

The adaptation of the MPDATA algorithm to the GPU

architecture is presented in Rojek and Wyrzykowski (2017)

and Rojek et al. (2017b). However, although both GPU and

FPGA can be programmed using OpenCL, the code is not

portable. The GPU-based implementation is massively par-

allel and uses many threads to hide memory latency, while

FPGA supports pipelining to utilize LUTs. GPU does not

require to explicitly manage memory banks of the global

memory. Moreover, FPGA provides limitations with two

simultaneously memory accesses to BRAM, and 31 mem-

ory pins for kernels handlers, pipes objects, and arguments

sent to the kernels. It enforces to strongly redesign the GPU

implementation to achieve high performance on the FPGA-

based platform.

8. Conclusion and future work

In this work, we proposed a highly optimized CFD kernels

for Xilinx Alveo U250 FPGA customized to the scenario

compatible with the EULAG geophysical model. Current

FPGA devices can be effectively explored with high-level

programming languages. The OpenCL standard allows us

to saturate the FPGA global memory bandwidth and out-

perform the strongly optimized CPU version of the kernels.

The adaptation process is challenging because of data

access restrictions and a very long compilation time in a

hardware mode that in some cases exceeds 20 hours. The

software and hardware emulation reduces the compilation

time but the hardware mode is crucial to provide full code

validation. The disadvantage of current Alveo cards is poor

support of double-precision arithmetic for floating-point

operation. For this reason, applications that require

double-precision arithmetic are very inefficient even for

memory-bound algorithms. Another inconvenience is the

limitations of OpenCL that do not allow programmers to

utilize all the architectural solutions (e.g. UltraRAM is not

supported). However, the proposed adaptation allows us to

achieve up to 4x speedup over the CPU version of kernels,

up to 80% less energy consumption, and up to 6x higher

performance per watt. The developed kernels are fully

compatible with EULAG geophysical model supporting all

the required parameters, including domain settings, border

conditions, and hardware characteristics.

Our future work includes further adaptations of CFD

codes to the FPGA architecture. Currently, we provide the

adaptation of advection to the Xilinx Alveo U280 FPGA

(Alveo U280 Data Center Accelerator, 2019) equipped

with 8GB of HBM (High Bandwidth Memory). Here the

memory is organized in 32 banks of size 256 MB each. The

fundamental difference in the code adaptation from Alveo

U250 is the need for data reorganization to provide parallel

utilization of memory banks. Our preliminary results

achieved using U280 show that the advection kernel can

be executed 1.2 times faster consuming 25% less energy

than using U250. However, our current U280 adaptation is

still significantly below the peak attainable performance.

Another path of future work is to extend our adaptation

across a cluster of FPGA-accelerated nodes.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work is supported in part by the National

Science Centre, Poland under grant no. UMO-2017/26/D/

ST6/00687.

ORCID iD

Krzysztof Rojek https://orcid.org/0000-0002-2635-7345

References

Alveo Accelerator Card Applications (2020) Available at: https://

www.xilinx.com/products/acceleration-solutions.html.

(accessed 17 February 2020).

Alveo U280 Data Center Accelerator (2019) Available at: https://

www.xilinx.com/support/documentation/data_sheets/ds963-

u280.pdf. (accessed 27 February 2020).

Ciznicki M, Kopta P, Kulczewski M, et al. (2014) Elliptic solver

performance evaluation on modern hardware architectures. In:

Wyrzykowski R, Dongarra J, Karczewski K, et al. (eds)

44 The International Journal of High Performance Computing Applications 35(1)

https://orcid.org/0000-0002-2635-7345
https://orcid.org/0000-0002-2635-7345
https://orcid.org/0000-0002-2635-7345
https://www.xilinx.com/products/acceleration-solutions.html.
https://www.xilinx.com/products/acceleration-solutions.html.
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf

Parallel Processing and Applied Mathematics. Berlin, Heidel-

berg: Springer, pp. 155–165.

Cosmo Public area (2020) Available at: http://www.cosmo-

model.org. (accessed 17 February 2020).

de Fine Licht J, Blott M and Hoefler T (2018) Designing scalable

FPGA architectures using high-level synthesis. In: Proceed-

ings of the 23rd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming. PPoPP’18, Vienna, Aus-

tria, pp. 403–404. New York, NY, United States: Association

for Computing Machinery.

de Fine Licht J, Kwasniewski G and Hoefler T (2019) Flexible

communication avoiding matrix multiplication on FPGA with

high-level synthesis. In: Proceedings of the 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays (FPGA’20), Seaside, CA, USA, 23–25 February 2020.

Iserte S and Rojek K (2020) An study of the effect of process

malleability in the energy efficiency on GPU-based clusters.

The Journal of Supercomputing 76: 255–274.

Luzhou W, Sano K and Yamamoto S (2012) Domain-specific

language and compiler for stencil computation on FPGA-

based systolic computational-memory array. In: Choy OCS,

Cheung RCC, Athanas P, et al. (eds) Reconfigurable Comput-

ing: Architectures, Tools and Applications. Berlin, Heidel-

berg: Springer, pp. 26–39.

Montella R, Giunta G, Laccetti G, et al. (2016) Virtualizing

CUDA enabled GPGPUs on ARM clusters. In: Wyrzykowski

R, Deelman E, and Dongarra J, et al. (eds) Parallel Processing

and Applied Mathematics. Berlin: Springer, pp. 3–14.

Montella R, Kosta S, Oro D, et al. (2017) Accelerating Linux and

Android applications on low-power devices through remote

GPGPU offloading. Concurrency and Computation: Practice

and Experience 29(24): e4286.

Okina K, Soejima R, Fukumoto K, et al. (2016) Power perfor-

mance profiling of 3-d stencil computation on an FPGA accel-

erator for efficient pipeline optimization. ACM SIGARCH

Computer Architecture News 43(4): 9–14.

OpenCL Overview (2020) Available at: https://www.khronos.org/

opencl. (accessed 19 February 2020).

OpenMP—Home (2020) Available at: https://www.openmp.org.

(accessed 25 February 2020).

Piotrowski ZP, Matejczyk B, Marcinkowski L, et al. (2016) Par-

allel ADI preconditioners for all-scale atmospheric models. In:

R Wyrzykowski, E Deelman, and J Dongarra. (eds) Parallel

Processing and Applied Mathematics. New York, NY:

Springer International Publishing, pp. 607–618.

Prusa J, Smolarkiewicz P and Wyszogrodzki A (2008) Eulag, a

computational model for multiscale flows. Computers &

Fluids 37: 1193–1207.

Rojek K (2018) Machine learning method for energy reduction by

utilizing dynamic mixed precision on GPU-based supercom-

puters. Concurrency and Computation: Practice and Experi-

ence 31: e4644.

Rojek K and Wyrzykowski R (2017) Performance modeling of 3D

MPDATA simulations on GPU cluster. The Journal of Super-

computing 73(2): 664–675.

Rojek K, Ciznicki M, Rosa B, et al. (2015) Adaptation of fluid

model EULAG to graphics processing unit architecture.

Concurrency and Computation: Practice and Experience

27(4): 937–957.

Rojek K, Quintana-Ortı́ ES and Wyrzykowski R (2017a) Model-

ing power consumption of 3D MPDATA and the CG method

on ARM and intel multicore architectures. The Journal of

Supercomputing 73(10): 4373–4389.

Rojek K, Wyrzykowski R and Kuczynski L (2017b) Systematic

Adaptation of Stencil-based 3D MPDATA to GPU Architec-

tures. Concurrency and Computation: Practice and Experi-

ence 29(9): e3970.

Rojek K, Ilic A, Wyrzykowski R, et al. (2017c) Energy-aware

mechanism for stencil-based MPDATA algorithm with con-

straints. Concurrency and Computation: Practice and Experi-

ence 29(8): e4016.

Sano K, Hatsuda Y and Yamamoto S (2014) Multi-FPGA accel-

erator for scalable stencil computation with constant memory

bandwidth. IEEE Transactions on Parallel and Distributed

Systems 25(3): 695–705.

SDAccel Environment Programmers Guide (2019) Available at:

https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_

doc/vno1533881025717.html (accessed 26 July 2020).

Smolarkiewicz P (2006) Multidimensional positive definite

advection transport algorithm: an overview. International

Journal for Numerical Methods in Fluids 50: 1123–1144.

Smolarkiewicz PK, Kühnlein C and Wedi NP (2014) A consistent

framework for discrete integrations of soundproof and com-

pressible PDEs of atmospheric dynamics. Journal of Compu-

tational Physics 263(C): 185–205.

Waidyasooriya HM and Hariyama M (2016) FPGA-based deep-

pipelined architecture for FDTD acceleration using OpenCL.

In: 2016 IEEE/ACIS 15th International Conference on Com-

puter and Information Science (ICIS), Okayama, Japan, 26–29

June 2016, pp. 1–6.

Waidyasooriya HM, Takei Y, Tatsumi S, et al. (2017) OpenCL-

based FPGA-platform for stencil computation and its optimi-

zation methodology. IEEE Transactions on Parallel and

Distributed Systems 28(5): 1390–1402.

Wojcik D, Kurowski M, Rosa B, et al. (2012) A study on paralllel

performance of the EULAG F90/F95 code. In Lecture Notes in

Computer Science, Vol. 7204, pp. 419–427.

Xiang Y, Yu B, Yuan Q, et al. (2017) GPU Acceleration of CFD

Algorithm: HSMAC and SIMPLE. In: Procedia Computer Sci-

ence 108: 1982–1989. International Conference on Computa-

tional Science, ICCS 2017, 12–14 June 2017, Zurich, Switzerland.

Xilinx—Adaptable, Intelligent (2020) Available at: https://www.

xilinx.com. (accessed 19 February 2020).

Xilinx Intellectual Property (2020) Available at: https://www.

xilinx.com/products/intellectual-property.html. (accessed 17

February 2020).

Zhai Z (2019) Computational Fluid Dynamics for Built and Natu-

ral Environments. Singapore: Springer. ISBN 9789813298194.

Author biographies

Krzysztof Rojek received his PhD in Computer Science

from the Czestochowa University of Technology in 2012

Rojek et al. 45

http://www.cosmo-model.org
http://www.cosmo-model.org
https://www.khronos.org/opencl
https://www.khronos.org/opencl
https://www.openmp.org
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/vno1533881025717.html
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/vno1533881025717.html
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/products/intellectual-property.html.
https://www.xilinx.com/products/intellectual-property.html.

and his DSc in 2019. During this period, his research

focused on the adaptation of HPC to the parallel proces-

sors’ architectures such as CPUs, GPUs, and FPGAs. Since

2012, Dr Rojek is a researcher at Czestochowa University

of Technology. His current work is directed at AI-

accelerated CFD simulations.

Kamil Halbiniak received his MSc degree in Computer

Science from the Czestochowa University of Technology

in 2015 and his PhD in 2019. Since 2019, Dr Halbiniak is a

researcher at Czestochowa University of Technology,

Poland. His current work is directed at the development

of efficient methods of adaptation of scientific applications

to modern HPC computing platforms.

Lukasz Kuczynski received his MSc degree in Computer

Science in 2001 from the Czestochowa University of

Technology, Poland. In 2010 he received his PhD degree

in Computer Science for his dissertation on data manage-

ment in grid systems. His research focuses on code opti-

mization for multicore architectures, including Intel and

ARM.

46 The International Journal of High Performance Computing Applications 35(1)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

