Laboratorium 3 Arytmetyka systemów komputerowych

Informacje wstępne

- Celem laboratorium jest zidentyfikowanie podstawowych operacji wygenerowanych w assemblerze, w tym dodawania, odejmowania, mnożenia oraz dzielenia z użyciem różnych typów danych takich jak int, float oraz double.
- Dalsza część kursu zostanie zrealizowana z wykorzystaniem serwera obliczeniowego firmy Intel posiadającego dwa procesory Intel Xeon CPU E5-2699 v3 2.30GHz.
- Dostęp do serwerów jest realizowany w sposób zdalny i zostanie przydzielony na czas trwania kursu lub wybranych laboratoriów. Po zakończeniu kursu zostaną usunięte wszystkie pliki.
- Każdy uczestnik kursu nie może wykorzystywać zasobów obliczeniowych do innych celów aniżeli przewidziane do realizacji zadania w ramach przedmiotu Architektury Systemów Komputerowych.
- Wszyscy uczestnicy kursu będą wykonywać swoje zadania we wspólnej przestrzeni dyskowej używając jednego konta (użytkownika). Oznacza to, że każdy uczestnik kursu ma dostęp do plików innych uczestników, które może edytować i usuwać.
- Ze względu na powyższą formę pracy:
 - każdy uczestnik powinien realizować zadania we własnym folderze, zachowując regułę grzecznościową niezaglądania do folderów innych uczestników.
 - zachęcam do robienia regularnych kopii swoich plików/programów.

Logowanie do systemu: Windows

- Przykładowo, aby uzyskać dostęp do serwera należy pobrać i zainstalować (a raczej uruchomić) terminal tekstowy <u>putty</u> oraz <u>winscp</u>:
 - <u>https://www.putty.org/</u>
 - https://winscp.net/eng/download.php
- Następnie, należy pobrać klucz prywatny umożliwiający autoryzację dostępu: http://icis.pcz.pl/~lszustak/ASK/laboratoria/key_windows.zip
 Po rozpakowaniu, w katalogu "key_windows" będzie plik o nazwie "*id_rsa.ppk*", który należy zapisać w bezpiecznym miejscu. Uwaga! Klucz Został zabezpieczony hasłem: architektura
- Dodatkowe, informacje:
 - nazwa konta i nazwa hosta: phi20@miclab.pl
 - nr portu: 1
 - hasło do klucza: architektura
- Po zalogowaniu należy utworzyć własny katalog potrzebny do realizacji ćwiczeń:
 mkdir -p wybrana przez ciebie nazwa
- Przydatne komendy:
 - **Is** wyświetla zawartość foldera
 - **pwd** wyświetla ścieżkę, w której jesteśmy
 - ctrl+l czyści ekran
 - **mkdir nazwa_folderu** tworzy folder
 - **cd ścieżka_do_folderu** umożliwia poruszanie się po przestrzeni dyskowej

Logowanie do systemu: Linux

 W pierwszej kolejności należy pobrać klucz prywatny umożliwiający autoryzację dostępu:

http://icis.pcz.pl/~lszustak/ASK/laboratoria/key_linux.tar

- Należy się upewnić, że folder .ssh istnieje. Jeżeli folder .ssh nie istnieje, należy go utworzyć komendą: mkidr ~/.ssh/
- Następnym krokiem jest przeniesienie pobranego klucza do folderu .ssh. W tym celu wykorzystujemy komendę: mv ~/Pobrane/key_linux.tar ~/.ssh/ Uwaga: Należy się upewnić, że podano poprawną ścieżkę do klucza.
- Przeniesiony plik z kluczem należy rozpakować. W tym celu przechodzimy do folderu, w którym się znajduje komendą: cd ~/.ssh/ Następnie wykonujemy polecenie: tar -xf key_linux.tar
- Po rozpakowaniu, w bieżącym katalogu znajdują się dwa pliki niezbędne do logowania: id_rsa oraz id_rsa.pub
- Aby zalogować się na serwer należy skorzystać z protokołu ssh z poziomu terminala:
 - ssh -i id_rsa phi20@miclab.pl -p 1
- Uwaga! Klucz został zabezpieczony hasłem: architektura
- Po zalogowaniu należy utworzyć własny katalog potrzeby do realizacji ćwiczeń:
 - mkdir -p wybrana_przez_ciebie_nazwa
- Przydatne komendy:
 - Is wyświetla zawartość foldera
 - pwd wyświetla ścieżkę, w której jesteśmy
 - ctrl+l czyści ekran
 - mkdir nazwa_folderu tworzy folder
 - cd ścieżka_do_folderu umożliwia poruszanie się po przestrzeni dyskowej
- Transfer plików pomiędzy komputerem a serwerem:
 - W pierwszej kolejności należy upewnić się z jakiej dystrybucji Linuxa korzystamy. W tym celu z terminala wykonujemy polecenie: Isb_release -a W salach laboratoryjnych dostępny jest Ubuntu oraz CentOS.
 - Następnie otwieramy dowolny folder i w miejsce ścieżki wpisujemy:
 - ssh://phi20@miclab.pl/home/phi20/ w przypadku CentOS
 - fish://phi20@miclab.pl/home/phi20/ w przypadku Ubuntu
 - Po wprowadzeniu hasła do klucza otrzymujemy dostęp do plików znajdujących się na serwerze. Uwaga: Należy korzystać tylko z własnego folderu.

Zadanie 1

 Utwórz plik w swoim folderze o unikalnej nazwie np. *lab3.cpp*, a następnie wklejć poniższy program:

```
#include <iostream>
int main()
{
    float a = 5;
    float b = 4;
    float c = 0;
    c = a + b;
    std::cout<<c<<std::endl;
    return 0;
}</pre>
```

- Skompiluj utworzony program tak aby wygenerować kod do asemblerze korzystając z następującej komendy: g++ -S lab3.cpp -O0
- Otwórz wygenerowany plik o nazwie *lab3.s* w celu znalezienia fragmentu kodu odpowiedzialnego za wykonanie operacji dodawania (szukaj linijki kodu zawierającej słowa "*add*"), a następnie "zapamiętaj/zapisz" instrukcję.

movl	\$0, -4(%rbp)
movl	-12(%rbp), %edx
movl	-8(%rbp),_%eax
addl	%edx, %eax
movl	%eax, -4(%rbp)
movl	-4(%rbp), %eax
moul	Vory Vori

- W kolejnych krokach:
 - zamień w głównym pliku *lab3.cpp* operację dodawania na inne operacje np. odejmowania, mnożenia i dzielenia, skompiluj, znajdź odpowiednią instrukcję i ją zapamiętaj
 - powtórz powyższe czynności dla różnych typów danych w tym int, float oraz double, jak również użyj operacji mnożenia i dzielenia dla operacji zmiennoprzecinkowych.

	int	float	double
operacja +	addl	•••••	•••••
operacja -	•••••	•••••	
operacja *	•••••	•••••	•••••

operacja /	 	

Zadanie 2

Korzystając z powyższej tabelki, dla wybranej kombinacji z zadania 1 (np. operacja dodawania dla typu int), edytuj plik wygenerowany w assemblerze, znajdź linijkę kodu odpowiedzialną za operację np. dodawania i zamień komendę dodawania na komendę asemblera odejmowania.

movl movl movl	\$0, -4(%rbp) -12(%rbp), %edx -8(%rbp), %eax	movl movl movl	<pre>\$0, -4(%rbp) -12(%rbp), %edx -8(%rbp), %eax</pre>
addl	%edx, %eax	subl	%edx, %can
movl movl	%eax, -4(%rbp) -4(%rbp), %eax	movl movl movl	%eax, -4(%rbp) -4(%rbp), %eax %eax. %esi

Zapisz plik, skompiluj i uruchom w następujący sposób:

- kompilacja: g++ lab3.s -O0 -o exe
- uruchomienie: **./exe**

Sprawdź czy zamiana instrukcji dodawania na instrukcję odejmowania zadziałała zgodnie z oczekiwaniem.

Powtórzy powyższą czynność dla różnych typów danych podmieniając w asemblerze różne operacje:

- Kombinacja: operacja dodawania na typie int oraz zamiana na operacje -,*,/
- Kombinacja: operacja dodawania na typie float oraz zamiana na operacje -,*,/
- Kombinacja: operacja dodawania na typie double oraz zamiana na operacje -,*,/