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Introduction

Introduction

The idea of systems/models closed in a "black box".

When they are similar, bisimilar or indistinguishable?

How we can check, if it is the bisimulation?
... by playing a game...

A hold-up for probabilistic systems.
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Models

A Transition System

Definition
A transition system is a four-tuple
TS = (S,E ,T ,s0), where:

S is the set of states with initial state s0,

E is the set of events,

T ⊆ S×E×S is the set of transitions
(as usual, the transition (s,a,s1) is
written as s

a→ s1)

[4]
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Models

A Nondeterministic Finite Automata

Definition (NFA)

A Nondeterministic Finite Automata is a tuple NFA = (Q,Σ,δ,q0,F),
where:

Q is the finite set of states, with the start state q0,

Σ is the finite set of input symbols,

δ is the transition function δ : Q× (Σ∪{ε}) 7→ 2Q ,

F ⊆ Q is the set of final (accepting) states.

[1]
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Models

Example of NFA

Example

NFA = (Q,Σ,δ,q,F):
Q = {q0,q1,q2}
Σ = {0,1}
q = q0

F = {q2}

The transition function

Q \ Σ 0 1

q0 {q0} {q0,q1}
q1 /0 {q2}
q2 /0 /0
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Models

A Finite Markov Chain

Definition

A Finite Markov Chain is a pair MC = (Q,δ), where:

Q is the set of states,

δ is the transition function δ : Q 7→D(Q),

[2]

Notation

If q ∈ Q and δ(q) = P with P(s′) = p > 0, then the Markov chain is said to go
from the state s to the state s′ with probability p.
Notations: s ; P, s

p
; s′, δ(s) = P(s), δ(s)(s′) = p.
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Models

A Finite Reactive Probabilistic Automata

Definition (PA)

A finite reactive probabilistic
automata is a tuple
PA = (Q,Σ,δ,q0,F), where:

Q is the finite set of states,

Σ is the finite set of input symbols,

δ : Q×{Σ∪{ε}} 7→D(Q) is the
transition function

q0 ∈ Q is the initial state,

F ⊆ Q is the set of final
(accepting) states.

[6]
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Bisimulation

Bisimulation

When are two processes (states) behavioraly equivalent?

What does it mean for two systems to be equal with respect to their
communication structures?
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Bisimulation

Bisimulation relation

Definition (Bisymulation)

Two transition systems TS1 = (S,Σ,δ,s0) i TS2 = (T ,Σ,δ, t0) are bisimilar iff
there is a relation R ⊆ S×T such that the initial states are related and for all
pairs (s, t) ∈ R and for all σ ∈ Σ the following holds:

whenever δ(s,σ) = s′ then there exists t ′ ∈ T , such that δ(t,σ) = t ′

and (s′, t ′) ∈ R, and

whenever δ(t,σ) = t ′ then there exists s′ ∈ S, such that δ(s,σ) = s′

and (s′, t ′) ∈ R.

States s, t are called bisimilar, denoted by s ≈ t .

[5], [6], [3]
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Bisimulation

Let’s play...

...in bisimulation:

this is a game between two persons: the Player and the Opponent

the Player tries to prove that systems are bisimilar - the Opponent intends
otherwise

the Opponent opens the game by choosing a transition from the initial
state of one of the systems

the Player have to find an equally labelled transition from initial state of
the second system

new states are starting points for next turn...

if one of players cannot move - other wins this turn of the game

the Player loses abundantly, if there are no corresponding transition for
Opponent’s move

the Player wins any infinite turn of the game or any repeated configuration
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Bisimulation

Are they bisimilar?

Yes, they are.
R = {(s0, t0),(s0, t2),(s1, t1),(s1, t3)}
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Bisimulation

Are they bisimilar?

No, they are not.
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Bisimulation for probabilistic systems

Introduction

A hold-up for probabilistic systems.

How to collate probability distributions?

What to do with read symbols?

Is it game still the same?
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Bisimulation for probabilistic systems

Equivalence Relation

Proposition

Let R be an equivalence relation on the set S and let P1,P2 ∈D(S) be
probability distributions. Then:

P1 ≡R P2 ⇐⇒ ∀C ∈ S/R : P1[C] = P2[C], (1)

where C is an abstract class. [6]

Definition

Let R be an equivalence relation on the set S, A a set, and let P1,P2 ∈D(S)
be probability distributions. Define:

P1 ≡R,A P2 ⇐⇒ ∀C ∈ S/R,∀a ∈ A : P1[a,C] = P2[a,C], (2)

[6]

Let’s (Bi)Simulate



Bisimulation for probabilistic systems

Bisimulation for Markov Chains

Definition

Equivalence relation on the set of states Q of Markov chain (Q,δ) will be a
bisimulation relation iff ∀(q, t) ∈ R:

δ(q) = P1, then exists δ(t) = P2 such, that P1 ≡R P2. (3)

R = {(q0, t0),(q1, t1),(q1, t2),(q2, t3),(q2, t4)}
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Bisimulation for probabilistic systems

Bisimulation for PA I

Definition

Let PA1 = (S,Σ,δ) and PA2 = (T ,Σ,δ) be two probabilistic automatas, then
exists a bisimulation relation R ⊆ S×T , if for all pairs (s, t) ∈ R and for all
σ ∈ Σ holds:

if δ(s,σ) = P1 then exists a probability distribution P2 such, that for t ′ ∈ T
exists δ(t,σ) = P2 and P1 ≡R,Σ P2. [6]
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Bisimulation for probabilistic systems

Bisimulation for PA II

R = {(s0, t0),(s1, t1),(s2, t1),(s3, t2),(s43, t2),(s5, t3)}
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Summary

Summary

A bisimulation relation is a tool for finding equivalent systems.

A game as a simple way for checking, if it is a bisimulation.

For probabilistic systems it is much more complicated...

Bisimulation as a foundation for "stronger" relations, useful in, for
example, minimization of systems.
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